解:(1)根據(jù)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn),可得A
1的坐標(biāo)為(-2
,-
),B
1的坐標(biāo)為(-2
,0),A
1的坐標(biāo)為(0,-
),
將三點(diǎn)代入雙曲線y=
,只有點(diǎn)A
1,符合解析式,此時(shí)左邊=-
,右邊=
=-
,左邊=右邊.
故有在雙曲線上的點(diǎn),這個(gè)點(diǎn)是A
1,它的坐標(biāo)為(-2
,-
);
(2)①平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)在雙曲線上,此時(shí)點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(-2
+a,
),
代入解析式得:
=
,
解得:a=4
;
②平移后點(diǎn)C的對(duì)應(yīng)點(diǎn)在雙曲線上,此時(shí)點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(a,
),
代入解析式得:
=
,
解得:a=2
;
綜上可得a=2
或a=4
;
(3)點(diǎn)A(-2
,
)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)A
2的坐標(biāo)為(2
,-
),
設(shè)過(guò)點(diǎn)A、A2的直線解析式為y=kx+b,則
,
解得:
,
故直線AA
2的解析式是
.
分析:(1)分別將A、B、C三點(diǎn)關(guān)于x軸對(duì)應(yīng)點(diǎn)的坐標(biāo)代入雙曲線解析式,看能否滿足解析式,能滿足解析式的點(diǎn),則該點(diǎn)在雙曲線上;
(2)因?yàn)殡p曲線與x軸沒(méi)交點(diǎn),所以移動(dòng)后只可能是A或C的對(duì)應(yīng)點(diǎn)在雙曲線上,分別討論即可得出答案;
(3)根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn),求出點(diǎn)A
2的坐標(biāo),然后運(yùn)用待定系數(shù)法求解析式即可.
點(diǎn)評(píng):本題屬于反比例函數(shù)綜合題,涉及了待定系數(shù)法求函數(shù)解析式、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)、函數(shù)圖象上點(diǎn)的坐標(biāo)特征,綜合性較強(qiáng),但難度一般,解答本題的關(guān)鍵是將所學(xué)知識(shí)融會(huì)貫通.