【題目】下列條件,不能判定△ABC與△DEF相似的是( 。
A.∠C=∠F=90°,∠A=55°,∠D=35°
B.∠C=∠F=90°,AB=10,BC=6,DE=15,EF=9
C.∠C=∠F=90°,
D.∠B=∠E=90°, =

【答案】D
【解析】解答:A相似:∵∠A=55°∴∠B=90°-55°=35°∵∠D=35°∴∠B=∠D∵∠C=∠F∴△ABC∽△DEFB相似:∵AB=10,BC=6,DE=15,EF=9, = = , = =
=
∵∠C=∠F∴△ABC∽△DEF
C相似:∵∠C=∠F=90°, =
∴△ABC∽△DEF
D不相似:
,有一組角相等兩邊對(duì)應(yīng)成比例,但該組角不是這兩邊的夾角,故不相似.
故選D .
分析:根據(jù)相似三角形的判定方法對(duì)各個(gè)選項(xiàng)進(jìn)行分析即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定的相關(guān)知識(shí),掌握相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)為方便游客參觀,在每個(gè)景點(diǎn)均設(shè)置兩條通道,即樓梯和無障礙通道.如圖,已知在某景點(diǎn)P處,供游客上下的樓梯傾斜角為30°(即∠PBA=30°),長(zhǎng)度為4m(即PB=4m),無障礙通道PA的傾斜角為15°(即∠PAB=15°).求無障礙通道的長(zhǎng)度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin15°≈0.21,cos15°≈0.98)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一路燈距地面5.6米,身高1.6米的小方從距離燈的底部(點(diǎn)O)5米的A處,沿OA所在的直線行走到點(diǎn)C時(shí),人影長(zhǎng)度增長(zhǎng)3米,則小方行走的路程AC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=,的圖象向下平移2個(gè)單位后得直線l,直線lx軸于點(diǎn)A、交y軸于點(diǎn)B,在線段AB上有一動(dòng)點(diǎn)P(不與點(diǎn)A、B重合),過點(diǎn)P分別作PE⊥x軸點(diǎn)E,PF⊥y軸于點(diǎn)F,當(dāng)線段EF的長(zhǎng)最小時(shí),點(diǎn)P的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ABDC , ∠B=90°,EBC上一點(diǎn),且AEED . 若BC=12,DC=7,BEEC=1:2,

(1)AB長(zhǎng)
(2)AED的面

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是直角△ABC (∠C=90°)的角平分線,EFADD , 與ABAC的延長(zhǎng)線分別交于E , F , 寫出圖中的一對(duì)全等三角形是 ;一對(duì)相似三角形是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點(diǎn)E,點(diǎn)FAC上,且BD=DF.

(1)求證:CF=EB;

(2)請(qǐng)你判斷AE、AFBE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一列有序數(shù)對(duì):(1,2),(4,5),(9,10),(16,17),…,按此規(guī)律,第5對(duì)有序數(shù)對(duì)為;若在平面直角坐標(biāo)系xOy中,以這些有序數(shù)對(duì)為坐標(biāo)的點(diǎn)都在同一條直線上,則這條直線的表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值和它對(duì)應(yīng),那么就說y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當(dāng)自變量x=a時(shí),相應(yīng)的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當(dāng)x=4時(shí),f(4)=42﹣2×4﹣3=5在平面直角坐標(biāo)系xOy中,對(duì)于函數(shù)的零點(diǎn)給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)對(duì)應(yīng)的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)有零點(diǎn),即存在c(a≤c≤b),使f(c)=0,則c叫做這個(gè)函數(shù)的零點(diǎn),c也是方程f(x)=0在a≤x≤b范圍內(nèi)的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.

觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內(nèi)有零點(diǎn).由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點(diǎn),﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內(nèi)y1=f(x)的零點(diǎn)的個(gè)數(shù)是
(2)已知函數(shù)y2=f(x)=﹣ 的零點(diǎn)為x1 , x2 , 且x1<1<x2
①求零點(diǎn)為x1 , x2(用a表示);
②在平面直角坐標(biāo)xOy中,在x軸上A,B兩點(diǎn)表示的數(shù)是零點(diǎn)x1 , x2 , 點(diǎn) P為線段AB上的一個(gè)動(dòng)點(diǎn)(P點(diǎn)與A、B兩點(diǎn)不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點(diǎn)為Q,若a是整數(shù),求拋物線y2的表達(dá)式并直接寫出線段PQ長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案