精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一次函數的圖像分別與軸、軸交于點,以線段為邊在第一象限內作等腰直角三角形,,則過兩點的直線對應的函數表達式為________.

【答案】

【解析】

CD⊥x軸于點D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性質可知OA=CD,AD=OB,故可得出C點坐標,再用待定系數法即可求出直線BC的解析式.

解:如圖所示:作CD⊥x軸于點D.


∵∠BAC=90°,
∴∠OAB+∠CAD=90°,
又∵∠CAD+∠ACD=90°,
∴∠ACD=∠BAO,
在△ABO與△CAD中,

,

∴△ABO≌△CAD(AAS),
AD=OB=2,CD=OA=3,
OD=OA+AD=5.
則點C的坐標是(5,3).
設直線BC的解析式是y=kx+b,
根據題意得: ,

解得: ,

則直線BC的解析式是:y=x+2.

故答案為::y=x+2.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為a,動點P從點A出發(fā),沿折線A→B→D→C→A的路徑運動,回到點A時運動停止.設點P運動的路程長為x,AP長為y,則y關于x的函數圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將連續(xù)正整數按以下規(guī)律排列,則位于第7行第7列的數x是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】
(1)先求解下列兩題: ①如圖①,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數;
②如圖②,在直角坐標系中,點A在y軸正半軸上,AC∥x軸,點B,C的橫坐標都是3,且BC=2,點D在AC上,且橫坐標為1,若反比例函數 的圖象經過點B,D,求k的值.
(2)解題后,你發(fā)現以上兩小題有什么共同點?請簡單地寫出.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當x任取一值時,x對應的函數值分別為y1、y2 . 若y1≠y2 , 取y1、y2中的較小值記為M;若y1=y2 , 記M=y1=y2 . 例如:當x=1時,y1=0,y2=4,y1<y2 , 此時M=0.下列判斷:
①當x>0時,y1>y2;
②當x<0時,x值越大,M值越;
③使得M大于2的x值不存在;
④使得M=1的x值是﹣
其中正確的是( )

A.①②
B.①④
C.②③
D.③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)0.5小時后到達甲地,游玩一段時間后按原速前往乙地.小明離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程y(km)與小明離家時間x(h)的函數圖象.已知媽媽駕車的速度是小明騎車速度的3倍.

(1)求小明騎車的速度和在甲地游玩的時間;
(2)小明從家出發(fā)多少小時后被媽媽追上?此時離家多遠?
(3)若媽媽比小明早10分鐘到達乙地,求從家到乙地的路程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩輛貨車分別從、兩地出發(fā),沿同一條公路相向而行,當到達對方的出發(fā)地后立即裝卸貨物,5分鐘后再按原路以原速度返回各自的出發(fā)地,已知、兩地相距100千米.甲車比乙車早5分鐘出發(fā),甲車出發(fā)10分鐘時兩車都行駛了10千米,甲、乙兩車離各自出發(fā)地的路程(千米)與甲車出發(fā)時間 (分鐘)的函數圖像如圖所示.

(1)甲車從地出發(fā)后,經過多長時間甲、乙兩車第一次相遇?

(2)乙車從地出發(fā)后,經過多長時間甲、乙兩車與各自出發(fā)地的距離相等?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進20海里到達B點,此時,測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于海里.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側),與y軸交于點C.將拋物線m繞點B旋轉180°,得到新的拋物線n,它的頂點為C1 , 與x軸的另一個交點為A1

(1)當a=﹣1,b=1時,求拋物線n的解析式;
(2)四邊形AC1A1C是什么特殊四邊形,請寫出結果并說明理由;
(3)若四邊形AC1A1C為矩形,請求出a,b應滿足的關系式.

查看答案和解析>>

同步練習冊答案