【題目】

(1)如圖,在平行四邊形ABCD中,已知點E在AB上,點F在CD上,且AE=CF.

求證:DE=BF

(2)如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,求∠CDA的度數(shù).

【答案】(1)證明見解析;(2)=125°.

【解析】試題分析:(1)本題利用三角形全等即可求出,或是證明四邊形DEBF是平行四邊形;(2)本題利用切線的性質(zhì)得出∠BOD的度數(shù),根據(jù)等邊對等角,得出∠ADO的度數(shù),即可求出∠CDA的度數(shù).

試題解析:

證明:(方法一)

∵四邊形ABCD是平行四邊形,

AB=CD,ABCD

AE=CF

BE=FD,BEFD,

∴四邊形EBFD是平行四邊形,

DE=BF

(方法二)

∵四邊形ABCD是平行四邊形,

∴∠A=∠C,AD=BC,

又∵AE=CF, ∴,所以DE=BF

(2)證明:連接,

CD與⊙O相切于點D,

ODCD,∴∠ODC=90°

=20°,∴∠COD=70°

OA=OD,∴∠ODA=35°

=90°+35°=125°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l外不重合的兩點A、B,在直線l上求作一點C,使得AC+BC的長度最短,作法為:①作點B關(guān)于直線l的對稱點B′;②連接AB′與直線l相交于點C,則點C為所求作的點.在解決這個問題時沒有運用到的知識或方法是( )

A.轉(zhuǎn)化思想
B.三角形的兩邊之和大于第三邊
C.兩點之間,線段最短
D.三角形的一個外角大于與它不相鄰的任意一個內(nèi)角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10) 已知雙曲線y=x0),直線l1y=kx)(k0)過定點F且與雙曲線交于AB兩點,設(shè)Ax1,y1),Bx2,y2)(x1x2),直線l2y=x+

1)若k =﹣1,求OAB的面積S;

2)若AB= ,求k的值;

3)設(shè)N0,2),P在雙曲線上,M在直線l2上且PMx軸,問在第二象限內(nèi)是否存在一點Q,使得四邊形QMPN是周長最小的平行四邊形,若存在,請求出Q點的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級某班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價與銷售量的相關(guān)信息如下.已知商品的進(jìn)價為30/件,設(shè)該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20

1)求出wx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當(dāng)天的銷售利潤最大?并求出最大利潤;

3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式計算正確的是(  )

A. -a(a+1)=-a2+1 B. a(-a+1)=-a2-1

C. -x2(x-1)=x3+x2 D. (-x)2·(x-1)=x3-x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個數(shù)有( )個 ① 的算術(shù)平方根是3
②± 的平方根

=0.2
⑤0.1是0.01的一個平方根.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,CD⊥AB,垂足為D,點F是BC上任意一點,F(xiàn)E⊥AB,垂足為E,且∠CDG=∠BFE,∠AGD=80°,求∠BCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB為銳角,點D為射線BC上一點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.如果AB=AC,∠BAC=90o,

(1)當(dāng)點D在線段BC上時(與點B不重合),如圖2,線段CF 、BD所在直線的位

置關(guān)系為 __________,線段CF 、BD的數(shù)量關(guān)系為 ;

(2)當(dāng)點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.

(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)將△A1B1C1向左平移3個單位后得到△A2B2C2 , 畫出△A2B2C2 , 并寫出頂點A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案