【題目】如圖,矩形ABCD的兩邊長AB=16cm,AD=4cm,點(diǎn)P,Q分別從A,B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動設(shè)運(yùn)動時(shí)間為x(秒),設(shè)△BPQ的面積為ycm2.
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)當(dāng)△BPQ面積有最大值時(shí),求x的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點(diǎn)的坐標(biāo)分別為(﹣1,0),(3,0),且點(diǎn)P1(x1,y1)、P2(x2,y2)在此拋物線上.對于下列結(jié)論:①abc>0;②b2﹣4ac>0;③當(dāng)x1<x2<0時(shí),y1>y2;④當(dāng)﹣1<x<3時(shí),y<0.其中正確的是_____(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點(diǎn)C是弧AB上異于A、B的動點(diǎn),過點(diǎn)C作CD⊥OA于點(diǎn)D,作CE⊥OB于點(diǎn)E,連結(jié)DE,點(diǎn)G、H在線段DE上,且DG=GH=HE
(1)求證:四邊形OGCH是平行四邊形;
(2)當(dāng)點(diǎn)C在弧AB上運(yùn)動時(shí),在CD、CG、DG中,是否存在長度不變的線段?若存在,請求出該線段的長度;
(3)求證:是定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形中,是對角線,點(diǎn)為矩形外一點(diǎn)且滿足,,交于點(diǎn),連接,過點(diǎn)作交于.
(1)若,,求矩形的面積;
(2)若,試判斷線段、、之間的關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件求關(guān)于x的二次函數(shù)的解析式
(1)圖象經(jīng)過(0,1)(1,0)(3,0)
(2)當(dāng)x=1時(shí),y=0; x=0時(shí),y= -2,x=2 時(shí),y=3
(3)拋物線頂點(diǎn)坐標(biāo)為(-1,-2)且通過點(diǎn)(1,10)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(-1,0),B(5,0),C(0,-)三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙A與y軸相切于原點(diǎn)O,平行于x軸的直線交⊙A于M、M兩點(diǎn),若點(diǎn)M的坐標(biāo)是(-4,-2),則點(diǎn)N的坐標(biāo)為( )
A.(-1,-2) B.(1,2) C.(-1.5,-2) D.(1.5,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點(diǎn)E,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點(diǎn)G.
(1)求證:△BDG∽△DEG;
(2)若EGBG=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D、E分別是邊AC、BC上兩點(diǎn).將三角形ABC沿DE翻折,點(diǎn)C正好落在線段AB上的點(diǎn)F處,使得AF:BF=2:3.若BE=16,則CE的長度為( )
A.18B.19C.20D.21
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com