分析 作DM⊥AC于M,DN⊥BC于N,構造正方形DMCN,利用正方形和等腰直角三角形的性質(zhì),通過證明△DMG≌△DNH,把△DHN補到△DNG的位置,得到四邊形DGCH的面積=正方形DMCN的面積,于是得到陰影部分的面積=扇形的面積-正方形DMCN的面積,即可得出結果.
解答 解:作DM⊥AC于M,DN⊥BC于N,連接DC,如圖所示:
∵CA=CB,∠ACB=90°,
∴∠A=∠B=45°,
DM=$\frac{\sqrt{2}}{2}$AD=$\frac{\sqrt{2}}{4}$AB,DN=$\frac{\sqrt{2}}{2}$BD=$\frac{\sqrt{2}}{4}$AB,
∴DM=DN,
∴四邊形DMCN是正方形,
∴∠MDN=90°,
∴∠MDG=90°-∠GDN,
∵∠EDF=90°,
∴∠NDH=90°-∠GDN,
∴∠MDG=∠NDH,
在△DMG和△DNH中,$\left\{\begin{array}{l}{∠MDG=∠NDH}&{\;}\\{∠DMG=∠DNH}&{\;}\\{DM=DN}&{\;}\end{array}\right.$,
∴△DMG≌△DNH(AAS),
∴四邊形DGCH的面積=正方形DMCN的面積,
∵正方形DMCN的面積=DM2=$\frac{1}{8}$AB2,=$\frac{1}{8}$×42=2,
∴四邊形DGCH的面積=$\frac{1}{8}$AB2,
∵扇形FDE的面積=$\frac{90π•C{D}^{2}}{360}$=$\frac{πA{B}^{2}}{16}$=$\frac{π×{4}^{2}}{16}$=π,
∴陰影部分的面積=扇形面積-四邊形DGCH的面積=π-2,
故答案為:π-2.
點評 本題主要考查了等腰直角三角形斜邊中線的性質(zhì),正方形的性質(zhì),全等三角形的判定和性質(zhì),能正確作出輔助線構造全等三角形是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | -3 | -4 | -3 | 0 | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com