如圖,點E是正方形ABCD內一點,將△ABE繞點B順時針轉90°,點E的對應點是F.
(1)在圖中畫出旋轉后的三角形;
(2)△EBF是______三角形;(只寫出結論,不證明)
(3)寫出AE和CF的關系.(不用證明)
(1)如圖;

(2)由旋轉的性質可得,∠EBF=90°,BE=BF,
∴△EBF是等腰直角三角形;

(3)因為△ABE繞點B順時針轉90°,
∴AE順時針轉90°到CF得位置,
即AE⊥CF,且AE=CF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC繞C點旋轉后,頂點A的對應點為點D,試確定頂點B對應點的位置,以及旋轉后的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,點A的坐標為(-2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是______個單位長度;△AOC與△BOD關于直線對稱,則對稱軸是______;△AOC繞原點O順時針旋轉得到△DOB,則旋轉角度可以是______度;
(2)連結AD,交OC于點E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

兩塊大小一樣斜邊為4且含有30°角的三角板如圖水平放置.將△CDE繞C點按逆時針方向旋轉,當E點恰好落在AB邊上的E′點時,
EE′
的長度為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

先將一矩形ABCD置于直角坐標系中,使點A與坐標系的原點重合,邊AB,AD分別落在x軸、y軸上(如圖1),再將此矩形在坐標平面內按逆時針方向繞原點旋轉30°(如圖2),若AB=4,BC=3,則圖1和圖2中點B點的坐標為______,點C的坐標______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1、2是兩個相似比為1:
2
的等腰直角三角形,將兩個三角形如圖3放置,小直角三角形的斜邊與大直角三角形的一直角邊重合.
(1)在圖3中,繞點D旋轉小直角三角形,使兩直角邊分別與AC、BC交于點E,F(xiàn),如圖4.求證:AE2+BF2=EF2
(2)若在圖3中,繞點C旋轉小直角三角形,使它的斜邊和CD延長線分別與AB交于點E、F,如圖5,此時結論AE2+BF2=EF2是否仍然成立?若成立,請給出證明;若不成立,請說明理由.


(3)如圖6,在正方形ABCD中,E、F分別是邊BC、CD上的點,滿足△CEF的周長等于正方形ABCD的周長的一半,AE、AF分別與對角線BD交于M、N,試問線段BM、MN、DN能否構成三角形的三邊長?若能,指出三角形的形狀,并給出證明;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖小正六邊形的邊長是大六邊形的一半,O是小正六邊形的中心,A是小正六邊形的一個頂點.若小正六邊形沿大六邊形內側滾動一周,回到原位置,則OA轉動的角度大小為( 。
A.240°B.360°C.540°D.720°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知∠AOB=30°,將∠AOB繞點O逆時針旋轉60°后得到∠EOF,則∠EOF=______.(填度數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC是由△EBD旋轉得到的,則旋轉中心是( 。
A.點BB.點CC.點DD.點A

查看答案和解析>>

同步練習冊答案