【題目】如圖是一組有規(guī)律的圖案,它們是由邊長相同的正方形和正三角形鑲嵌而成,第(1)個圖案有4個三角形,第(2)個圖案有7個三角形,第(3)個圖案有10個三角形,…依此規(guī)律,第(100)個圖案有___________________個三角形.

【答案】301

【解析】

觀察圖形可知:第(1)個圖案有3+1=4個三角形,第(2)個圖案有3×2+1=7個三角形,第(3)個圖案有3×3+110個三角形,…依此規(guī)律,第n個圖案有(3n+1)個三角形.把n=100代入即可求解.

∵第(1)個圖案有3+1=4個三角形,

第(2)個圖案有3×2+1=7個三角形,

第(3)個圖案有3×3+1=10個三角形,

∴第n個圖案有(3n+1)個三角形.

n=100代入得,3×100+1=301.

故答案為:301.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列一組勾股數(shù):

1

3=2×1+1

4=2×1×(1+1)

5=2×1×(1+1)+1

2

5=2×2+1

12=2×2×(2+1)

13=2×2×(2+1)+1

3

7=2×3+1

24=2×3×(3+1)

25=2×3×(3+1)+1

4

9=2×4+1

40=2×4×(4+1)

41=2×4×(4+1)+1

觀察以上各組勾股數(shù)的特點:

(1)請寫出第7組勾股數(shù),;

(2)寫出第組勾股數(shù),.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

(1)求證:ΔABF≌ΔEDF;
(2)將折疊的圖形恢復(fù)原狀,點F與BC邊上的點G正好重合,連接DG,若AB=6,BC=8,.求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F.已知AB=4,BC=6,F=55°,求線段EC的長和∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在A左側(cè)的一點,且AB兩點間的距離為10.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為tt0)秒.

1)數(shù)軸上點B表示的數(shù)是   ,點P表示的數(shù)是   (用含t的代數(shù)式表示);

2)動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā).求:

①當(dāng)點P運動多少秒時,點P與點Q相遇?

②當(dāng)點P運動多少秒時,點P與點Q間的距離為8個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b﹣1)x+c的圖象可能是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.

(1)把圓片沿數(shù)軸向左滾動1周,點A到達(dá)數(shù)軸上點C的位置,點C表示的數(shù)是______數(shù)(填“無理”或“有理”),這個數(shù)是______

(2)把圓片沿數(shù)軸滾動2周,點A到達(dá)數(shù)軸上點D的位置,點D表示的數(shù)是______

(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負(fù)數(shù),依次運動情況記錄如下:+2,-1,-5,+4,+3,-2當(dāng)圓片結(jié)束運動時,A點運動的路程共有多少?此時點A所表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示①,OP為一條拉直的細(xì)線,A,B兩點在OP上,且OA:AP=1:3,OB:BP =3:5.若先固定B點,將OB折向BP,使得OB重疊在BP上,如圖13-②,再從圖②的A點及與A點重疊處一起剪開,使得細(xì)線分成三段,求三段細(xì)線由小到大的長度比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,以AB為直徑的⊙O交AC于D,過點D作⊙O的切線交BC于E,AE交⊙O于點F.
(1)求證:E是BC的中點;
(2)求證:ADAC=AEAF=4DO2

查看答案和解析>>

同步練習(xí)冊答案