【題目】甲、乙兩工程隊(duì)共同承建某高速路隧道工程,隧道總長(zhǎng)2000米,甲、乙分別從隧道兩端向中間施工,計(jì)劃每天各施工6米.因地質(zhì)情況不同,兩支隊(duì)伍每合格完成1米隧道施工所需成本不一樣.甲每合格完成1米,隧道施工成本為6萬(wàn)元;乙每合格完成1米,隧道施工成本為8萬(wàn)元.

1)若工程結(jié)算時(shí)乙總施工成本不低于甲總施工成本的,求甲最多施工多少米?

2)實(shí)際施工開(kāi)始后因地質(zhì)情況比預(yù)估更復(fù)雜,甲乙兩隊(duì)每日完成量和成本都發(fā)生變化.甲每合格完成1米隧道施工成本增加m萬(wàn)元時(shí),則每天可多挖m米,乙因特殊地質(zhì),在施工成本不變的情況下,比計(jì)劃每天少挖m米,若最終每天實(shí)際總成本比計(jì)劃多(11m-8)萬(wàn)元,求m的值.

【答案】11000米;(24

【解析】

1)設(shè)甲工程隊(duì)施工x米,則乙工程隊(duì)施工(2000-x)米,由工程結(jié)算時(shí)乙總施工成本不低于甲總施工成本的,即可得出關(guān)于x的一元一次不等式,解之取其中的最大值即可得出結(jié)論;

2)根據(jù)總成本=每米施工成本×每天施工的長(zhǎng)度結(jié)合每天實(shí)際總成本比計(jì)劃多(11m-8)萬(wàn)元,即可得出關(guān)于m的一元二次方程,解之即可得出結(jié)論.

解:(1)設(shè)甲工程隊(duì)施工x米,則乙工程隊(duì)施工(2000-x)米,

依題意,得:82000-x×6x,

解得:x≤1000

答:甲最多施工1000米.

2)依題意,得:(6+m)(6+m+86-m=6×6+8+11m-8,

整理,得:m2-8m+16=0,

解得:m1=m2=4

答:m的值為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形紙片的邊長(zhǎng)為,翻折,使兩個(gè)直角頂點(diǎn)重合于對(duì)角線上一點(diǎn)分別是折痕,設(shè),給出下列判斷:

①當(dāng)時(shí),點(diǎn)是正方形的中心;

②當(dāng)時(shí),;

③當(dāng)時(shí),六邊形面積的最大值是

④當(dāng)時(shí),六邊形周長(zhǎng)的值不變.

其中錯(cuò)誤的是(

A.②③B.③④C.①④D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線與雙曲線)的一個(gè)交點(diǎn)為

1)求k的值;

2)將直線向上平移b(b>0)個(gè)單位長(zhǎng)度后,與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,與雙曲線)的一個(gè)交點(diǎn)記為Q.若,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,RtABC中,∠ACB90°,AC5,BC12,點(diǎn)D在邊AB上,以AD為直徑的O,與邊BC有公共點(diǎn)E,則AD的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩人分別從,兩地相向而行,甲先走3分鐘后乙才開(kāi)始行走,甲到達(dá)地后立即停止,乙到達(dá)地后立即以另一速度返回地,在整個(gè)行駛的過(guò)程中,兩人保持各自速度勻速行走,甲,乙兩人之間的距離(米)與乙出發(fā)的時(shí)間(分鐘)的函數(shù)關(guān)系如圖所示.當(dāng)甲到達(dá)地時(shí),則乙距離地的時(shí)間還需要________分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把三角形按如圖所示的規(guī)律拼圖案,其中第個(gè)圖案中有4個(gè)三角形,第個(gè)圖案中有6個(gè)三角形,第個(gè)圖案中有8個(gè)三角形,,按此規(guī)律排列下去,則第個(gè)圖案中三角形的個(gè)數(shù)為( )

A. 12 B. 14 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在半徑為1上,直線相切,,連接于點(diǎn).

(Ⅰ)如圖①,若,求的長(zhǎng);

(Ⅱ)如圖②,交于點(diǎn),若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中, ,對(duì)角線交于點(diǎn) 平分,過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn) ,連接

1)求證:四邊形是菱形;

2)若,求的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫坐標(biāo)分別為整數(shù)的點(diǎn),其順序按圖中“”方向排列,如······根據(jù)這個(gè)規(guī)律,第個(gè)點(diǎn)的縱坐標(biāo)為(  )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案