【題目】如圖所示,已知一次函數(shù)的圖像直線AB經(jīng)過點(0,6)和點(-2,0).
(1)求這個函數(shù)的解析式;
(2)直線AB與x軸交于點A,與y軸交于點B,求△AOB的面積.
【答案】(1)一次函數(shù)的解析式為:y=3x+6;(2)△AOB的面積=×6×2=6.
【解析】
(1)設(shè)一次函數(shù)的解析式為y=kx+b(k≠0),再把點(0,6)和點(-2,0)代入求出k、b的值即可;
(2)求出直線與坐標(biāo)軸的交點,再利用三角形的面積公式即可得出結(jié)論.
(1)設(shè)一次函數(shù)的解析式為y=kx+b(k≠0),
∵一次函數(shù)的圖象經(jīng)過點點(0,6)和點(-2,0),
∴,
解得,
∴一次函數(shù)的解析式為:y=3x+6;
(2)∵一次函數(shù)的解析式為y=3x+6,
∴與坐標(biāo)軸的交點為(0,6)和(-2,0),
∴△AOB的面積=×6×2=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑了4.5km到達(dá)學(xué)校,最后又向東,跑回到自己家.
(1)以小明家為原點,以向東為正方向,用1個單位長度表示1km,在圖中的數(shù)軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學(xué)校的位置;
(2)求小彬家與學(xué)校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上點、表示的數(shù)分別為、3.為數(shù)軸上一動點,其表示的數(shù)為.
(1)若到、的距離相等,則______;
(2)是否存在點,使?若存在,寫出的值;若不存在,請說明理由;
(3)若點、分別從、同時出發(fā),沿數(shù)軸正方向分別以2個單位/秒、1個單位/秒的速度運動,則經(jīng)過多長時間,、兩點相距1個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=8,點P在邊CD上,tan∠PBC=,點Q是在射線BP上的一個動點,過點Q作AB的平行線交射線AD于點M,點R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當(dāng)點R與點D重合時,求PQ的長;
(2)如圖2,試探索: 的比值是否隨點Q的運動而發(fā)生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;
(3)如圖3,若點Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月,某大型商業(yè)集團(tuán)隨機抽取所屬的部分商業(yè)連鎖店進(jìn)行評估,將抽取的各商業(yè)連鎖店按照評估成績分成了、、、四個等級,并繪制了如下不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)本次評估隨機抽取了多少家商業(yè)連鎖店?
(2)請補充完整扇形統(tǒng)計圖和條形統(tǒng)計圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);
(3)從、兩個等級的商業(yè)連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是等級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=的圖上象有三個點(2,y1),(3,y2),(﹣1,y3),則y1,y2,y3的大小關(guān)系是( 。
A. y1>y2>y3B. y2>y1>y3C. y3>y1>y2D. y3>y2>y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】州教育局為了解我州八年級學(xué)生參加社會實踐活動情況,隨機抽查了某縣部分八年級學(xué)生第一學(xué)期參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)檢測了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖(如圖)
請根據(jù)圖中提供的信息,回答下列問題:
(1)a= ,并寫出該扇形所對圓心角的度數(shù)為 ,請補全條形圖.
(2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(3)如果該縣共有八年級學(xué)生2000人,請你估計“活動時間不少于7天”的學(xué)生人數(shù)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E、F分別在AB、BC上,且AE=BF=1,CE、DF交于點O,下列結(jié)論:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=,⑤S△DOC=S四邊形EOFB中,正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com