【題目】如圖,已知⊙O的直徑AB=6,E、F為AB的三等分點,M、N為 上兩點,且∠MEB=∠NFB=60°,則EM+FN=

【答案】
【解析】解:如圖,延長ME交⊙O于G, ∵E、F為AB的三等分點,∠MEB=∠NFB=60°,
∴FN=EG,
過點O作OH⊥MG于H,連接MO,
∵⊙O的直徑AB=6,
∴OE=OA﹣AE= ×6﹣ ×6=3﹣2=1,
OM= ×6=3,
∵∠MEB=60°,
∴OH=OEsin60°=1× = ,
在Rt△MOH中,MH= = = ,
根據(jù)垂徑定理,MG=2MH=2× = ,
即EM+FN=
故答案為:

延長ME交⊙O于G,根據(jù)圓的中心對稱性可得FN=EG,過點O作OH⊥MG于H,連接MO,根據(jù)圓的直徑求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根據(jù)垂徑定理可得MG=2MH,從而得解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=﹣x2﹣2x+3與x軸交于A、B兩點,將這條拋物線的頂點記為C,連接AC、BC,則tan∠CAB的值為( )
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD繞點A逆時針旋轉(zhuǎn)30°,得到平行四邊形AB′C′D′(點B′與點B是對應點,點C′與點C是對應點,點D′與點D是對應點),點B′恰好落在BC邊上,則∠C=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的函數(shù)圖像與x軸、y軸分別交于點A、B,以線段AB為直角邊在第一象限內(nèi)作RtABC,且使∠ABC=30.

(1)求△ABC的面積;

(2)如果在第二象限內(nèi)有一點P(m,),試用含m的代數(shù)式表示四邊形AOPB的面積,并求當△APB與△ABC面積相等時m的值;

(3)是否存在使△QAB是等腰三角形并且在坐標軸上的點Q?若存在,請寫出Q的所有可能的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.“明天降雨的概率是80%”表示明天有80%的時間都在降雨
B.“拋一枚硬幣正面朝上的概率為 ”表示每拋2次就有一次正面朝上
C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為 ”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在 附近

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為聲援揚州“運河申遺”,某校舉辦了一次運河知識競賽,滿分10分,學生得分為整數(shù),成績達到6分以上(包括6分)為合格,達到9分以上(包含9分)為優(yōu)秀.這次競賽中甲乙兩組學生成績分布的條形統(tǒng)計圖如圖所示.
(1)補充完成下面的成績統(tǒng)計分析表:

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

6.7

3.41

90%

20%

乙組

7.5

1.69

80%

10%


(2)小明同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是組的學生;(填“甲”或“乙”)
(3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你給出兩條支持乙組同學觀點的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果10b=n,那么b為n的勞格數(shù),記為b=d(n),由定義可知:10b=n與b=d(n)所表示的b、n兩個量之間的同一關系.
(1)根據(jù)勞格數(shù)的定義,填空:d(10)= , d(102)=
(2)勞格數(shù)有如下運算性質(zhì): 若m、n為正數(shù),則d(mn)=d(m)+d(n),d( )=d(m)﹣d(n).
根據(jù)運算性質(zhì),填空:
=(a為正數(shù)),若d(2)=0.3010,則d(4)= , d(5)= , d(0.08)=
(3)如表中與數(shù)x對應的勞格數(shù)d(x)有且只有兩個是錯誤的,請找出錯誤的勞格數(shù),說明理由并改正.

x

1.5

3

5

6

8

9

12

27

d(x)

3a﹣b+c

2a﹣b

a+c

1+a﹣b﹣c

3﹣3a﹣3c

4a﹣2b

3﹣b﹣2c

6a﹣3b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中裝有白球2個和黃球1個,這些球除顏色外都相同,攪勻后從中任意摸出1個球,記下顏色后不放回,攪勻后再從中任意摸出1個球,請用列表或畫樹狀圖的方法求兩次都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC , 按如下步驟作圖:
第一步,分別以點A、D為圓心,以大于 AD的長為半徑在AD兩側(cè)作弧,交于兩點M、N;
第二步,連接MN分別交AB、AC于點E、F;
第三步,連接DE、DF
BD=6,AF=4,CD=3,則BE的長是( 。.

A.2
B.4
C.6
D.8

查看答案和解析>>

同步練習冊答案