【題目】如圖,△ABC中,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)40°后,得到△AB′C′,且C′在邊BC上,則∠AC′C的度數(shù)為( )
A.50°
B.60°
C.70°
D.80°
【答案】C
【解析】解:∵將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)40°后,得到△AB′C′,∴∠CAC′=40°,AC=AC′,
∴∠AC′C=∠C= (180°﹣∠CAC′)=70°,
故選C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的內(nèi)角和外角(三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角),還要掌握等腰三角形的性質(zhì)(等腰三角形的兩個(gè)底角相等(簡稱:等邊對(duì)等角))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=ax2+bx+c(a≠0),有下列四個(gè)結(jié)論:①abc>0;②4a+2b+c>0;③3a+c<0;④a+b≥m(am+b),其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0)、C(0,﹣3).
(1)求拋物線的解析式.
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上,是否存在以A、C、E、P為頂點(diǎn)且以AC為一邊的平行四邊形?如存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BE∥CF,它們依次交直線l1、l2于點(diǎn)A、B、C和點(diǎn)D、E、F.
(1)如果AB=6,BC=8,DF=21,求DE的長;
(2)如果DE:DF=2:5,AD=9,CF=14,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是⊙O直徑BD延長線上的一點(diǎn),C在⊙O上,AC=BC,AD=CD
(1)求證:AC是⊙O的切線;
(2)若⊙O的半徑為4,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的斜邊AB與量角器的直徑恰好重合,B點(diǎn)與0刻度線的一端重合,∠ABC=40°,射線CD繞點(diǎn)C轉(zhuǎn)動(dòng),與量角器外沿交于點(diǎn)D,若射線CD將△ABC分割出以BC為邊的等腰三角形,則點(diǎn)D在量角器上對(duì)應(yīng)的度數(shù)是( )
A.40°
B.70°
C.70°或80°
D.80°或140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司投資建了一商場,共有商鋪30間,據(jù)預(yù)測,當(dāng)每間租金定為10萬元,可全部租出,每間的年租金每增加5000元,少租出商鋪1間,該公司要為租出的商鋪每間每年交各種費(fèi)用1萬元,未租出的商鋪每間每年交各種費(fèi)用5000元.
(1)當(dāng)每間商鋪的年租金為l3萬元時(shí),能租出多少間?
(2)若從減少空鋪的角度來看,當(dāng)每間商鋪的年租金為多少萬元時(shí),該公司的年收益為275萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com