閱讀下面的文字,解答問題:
大家知道
2
是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫出來,于是小明用
2
-1
來表示
2
的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理,因為
2
的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
又例如:∵
4
7
9
,即2<
7
<3
,
7
的整數(shù)部分為2,小數(shù)部分為(
7
-2)

請解答:(1)如果
5
的小數(shù)部分為a,
13
的整數(shù)部分為b,求a+b-
5
的值;
(2)已知:10+
3
=x+y
,其中x是整數(shù),且0<y<1,求x-y的相反數(shù).
分析:(1)先估計
5
、
13
的近似值,然后判斷
5
的小數(shù)部分a,
13
的整數(shù)部分b,最后將a、b的值代入a+b-
5
并求值;
(2)先估計
3
的近似值,然后判斷
3
的整數(shù)部分并求得x、y的值,最后求x-y的相反數(shù).
解答:解:∵4<5<9,
∴2<
5
<3,
5
的小數(shù)部分a=
5
-2    ①
∵9<13<16,
∴3<
13
<4,
13
的整數(shù)部分為b=3     ②
把①②代入a+b-
5
,得
5
-2+3-
5
=1,即a+b-
5
=1

(2)∵1<3<9,
∴1<
3
<3,
3
的整數(shù)部分是1、小數(shù)部分是
3
-1
,
∴10+
3
=10+1+(
3
-1)
=11+(
3
-1
),
又∵10+
3
=x+y
,
∴11+(
3
-1
)=x+y,
又∵x是整數(shù),且0<y<1,
∴x=11,y=
3
-1
;
∴x-y=11-(
3
-1
)=12-
3

∴x-y的相反數(shù)y-x=-(x-y)=
3
-12
點評:此題主要考查了估算無理數(shù)的大小,注意首先估算無理數(shù)的值,再根據(jù)不等式的性質進行計算.現(xiàn)實生活中經(jīng)常需要估算,估算應是我們具備的數(shù)學能力,“夾逼法”是估算的一般方法,也是常用方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的文字,解答問題:
大家知道
2
是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫出來,于是小明用
2
-1
來表示
2
的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理的,因為
2
的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,所得的差就是小數(shù)部分.
又例如:因為
4
7
9
,即2<
7
<3
,
所以
7
的整數(shù)部分為2,小數(shù)部分為(
7
-2)

請解答:
(1) 如果
13
的整數(shù)部分為a,那么a=
 
.如果3+
3
=b+c
,其中b是整數(shù),且0<c<1,那么b=
 
,c=
 

(2) 將(1)中的a、b作為直角三角形的兩條直角邊,請你計算第三邊的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的文字,解答問題:
題目:已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(0,a),B(1,-2)兩點,求證:這個二次函數(shù)圖象的對稱軸是直線x=2.
題目中有一段被墨水污染了而無法辨認的文字.
(1)根據(jù)現(xiàn)有的信息,你能否求出題目中二次函數(shù)的解析式?若能,寫出解題過程;若不能,請說明理由;
(2)請你根據(jù)已有信息,增加一個適當?shù)臈l件,把原題補充完整,所填條件是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的文字,解答問題.
大家都知道
2
是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫出來,于是小明用
2
-1來表示
2
的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理的,因為
2
的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答:a表示
11
的整數(shù)部分,b表示
11
的小數(shù)部分.求2a+b-
11
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的文字,解答問題.
大家知道
2
是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫出來,但是由于1<
2
<2,所以
2
的整數(shù)部分為1,將
2
減去其整數(shù)部分1,差就是小數(shù)部分
2
-1,根據(jù)以上的內容,解答下面的問題:
(1)
5
的整數(shù)部分是
2
2
,小數(shù)部分是
5
-2
5
-2

(2)1+
2
的整數(shù)部分是
2
2
,小數(shù)部分是
2
-1
2
-1
;
(3)若設2+
3
整數(shù)部分是x,小數(shù)部分是y,求x-
3
y的值.

查看答案和解析>>

同步練習冊答案