【題目】如圖,已知在中,∠ACB=90°,,延長邊BA至點D,使AD=AC,聯(lián)結(jié)CD.

1)求∠D的正切值;

2)取邊AC的中點E,聯(lián)結(jié)BE并延長交邊CD于點F,求的值.

【答案】1;(2

【解析】

1)過點CCGBDG,根據(jù)已知三角函數(shù)值,設(shè)出參數(shù)表示出各邊長,可求出CE,DE,進而可得出∠D的正切值.

2)延長BFH,使EH=BE,連接CH,CHBD=,求出的值即可.

過點CCGBDG,

,∴設(shè)AC=3a,AB=5a,

易得∠ABC=ACG,sinACG=,

AG=AC·sinACG=,CG=

AD=AC=3a,DG=AD+AG=

tanD=,即∠D的正切值為.

延長BFH,使EH=BE,連接CH,CE=AE,CHBD,

=,△CEH≌△AEB,

CH=AB=5a,

BD=AD+AB=AE+AB=3a+5a=8a,

==.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,,在矩形內(nèi)有一點P,同時滿足,延長CPAD于點E,則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC > BC,CDRt△ABC的高,EAC的中點,ED的延長線與CB的延長線相交于點F.

(1)求證:DFBFCF的比例中項;

(2)在AB上取一點G,如果AE·AC=AG·AD,求證:EG·CF=ED·DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別是A(3,2),B(14),C(0,2)

(1)請畫出△ABC關(guān)于點O的對稱圖形△A1B1C1;

(2)將△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2并求出在旋轉(zhuǎn)過程中點B所經(jīng)過的圓弧長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)門口的欄桿從水平位置AB繞固定點O旋轉(zhuǎn)到位置DC,已知欄桿AB的長為3.5米,OA的長為3米,點CAB的距離為0.3米,支柱OE的高為0.6米,那么欄桿端點D離地面的距離為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,,,點EAB邊上的動點,過點B作直線CE的垂線,垂足為F,當(dāng)點E從點A運動到點B時,點F的運動路徑長為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011貴州安順)一次數(shù)學(xué)活動課上,老師帶領(lǐng)學(xué)生去測一條南北流向的河寬,如圖所示,某學(xué)生在河?xùn)|岸點A處觀測到河對岸水邊有一點C,測得CA北偏西31°的方向上,沿河岸向北前行40米到達B處,測得CB北偏西45°的方向上,請你根據(jù)以上數(shù)據(jù),求這條河的寬度.(參考數(shù)值:tan31°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC,BC=8,AB、AC的長是關(guān)于x的方程x210x+m=0的兩根,則m=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球賽期間,某商店銷售一批足球紀(jì)念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當(dāng)銷售單價定為44元時,每天可售出300本,銷售單價每漲1元,每天銷售量減少10本,現(xiàn)商店決定提價銷售.設(shè)每天銷售為本,銷售單價為.

1)請直接寫出之間的函數(shù)關(guān)系式和自變量的取值范圍;

2)將足球紀(jì)念冊銷售單價定為多少元時,商店每天銷售紀(jì)念冊獲得的利潤元最大?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案