【題目】已知拋物線
若該拋物線經(jīng)過點,試求的值及拋物線的頂點坐標(biāo).
求此拋物線的頂點坐標(biāo)(用含的代數(shù)式表示) ,并證明:不論為何值,該拋物線的頂點都在同一條直線上.
直線截拋物線所得的線段長是否為定值?若是,請求出這個定值;若不是,請說明理由.
【答案】(1)當(dāng)時, ,其頂點坐標(biāo)為,當(dāng)時, ,其頂點坐標(biāo)為;(2)頂點坐標(biāo)為;證明見解析;(3)是,
【解析】
(1)將點P的坐標(biāo)代入拋物線解析式中可求出m的值,再利用二次函數(shù)的性質(zhì)可求出拋物線的頂點坐標(biāo);
(2)利用配方法找出拋物線的頂點坐標(biāo),由其縱坐標(biāo)減橫坐標(biāo)為定值,可得出不論m為何值,該拋物線的頂點坐標(biāo)都在同一條直線l上;
(3)將直線l的解析式代入拋物線解析式中可得出關(guān)于x的一元二次方程,解之可得出交點的橫坐標(biāo),利用一次函數(shù)圖象上點的坐標(biāo)特征可得出交點的坐標(biāo),再利用兩點間的距離公式可求出直線l截拋物線所得的線段長.
解:將代入
得
解得或
當(dāng)時, ,其頂點坐標(biāo)為
當(dāng)時, ,其頂點坐標(biāo)為
方法1:設(shè)頂點坐標(biāo)為
則
頂點坐標(biāo)為
方法2:
∵
頂點坐標(biāo)為
證明:∵
不論為何值,該拋物線的頂點都在同一條直線上
是
將代入得
與拋物線的交點坐標(biāo)分別為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA=AB,∠OAB=90°,雙曲線y=經(jīng)過點A,雙曲線y=﹣經(jīng)過點B,已知點A的縱坐標(biāo)為﹣2,則點B的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點分別在軸的負(fù)半軸、軸的正半軸上,點在第二象限.將矩形繞點順時針旋轉(zhuǎn),使點落在軸上,得到矩形與相交于點.若經(jīng)過點的反比例函數(shù)的圖象交于點的圖象交于點則的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高.孝感市槐蔭公司根據(jù)市場需求代理、兩種型號的凈水器,每臺型凈水器比每臺型凈水器進(jìn)價多200元,用5萬元購進(jìn)型凈水器與用4.5萬元購進(jìn)型凈水器的數(shù)量相等.
(1)求每臺型、型凈水器的進(jìn)價各是多少元;
(2)槐蔭公司計劃購進(jìn)、兩種型號的凈水器共50臺進(jìn)行試銷,其中型凈水器為臺,購買資金不超過9.8萬元.試銷時型凈水器每臺售價2500元,型凈水器每臺售價2180元.槐蔭公司決定從銷售型凈水器的利潤中按每臺捐獻(xiàn)元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺凈水器并捐獻(xiàn)扶貧資金后獲得的利潤為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》內(nèi)容主要講數(shù)學(xué)的用途,淺顯易懂,其中有許多有趣的數(shù)學(xué)題,如“河邊洗碗”.原文:今有婦人河上蕩桮.津吏問曰:“桮何以多?“婦人曰:“家有客.”津吏曰:“客幾何?”婦人日:“二人共飯,三人共羹,四人共肉,凡用桮六十五.不知客幾何?“譯文:有一名婦女在河邊洗刷一大摞碗.一個津吏問她:“怎么刷這么多碗呢?“她回答:“家里來客人了.“津吏又問:“家里來了多少客人?”婦女答道:“2個人給一碗飯,3個人給一碗湯,4個人給一碗肉,一共要用65只碗,來了多少客人?”答:共有_____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線,四邊形ADBE是平行四邊形.
(1)求證:四邊形ADBE是矩形;
(2)求矩形ADBE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“大千故里,文化內(nèi)江”,我市某中學(xué)為傳承大千藝術(shù)精神,征集學(xué)生書畫作品.王老師從全校20個班中隨機(jī)抽取了4個班,對征集作品進(jìn)行了數(shù)量分析統(tǒng)計,繪制了如下兩幅不完整的統(tǒng)計圖.
(1)王老師采取的調(diào)查方式是 (填“普查”或“抽樣調(diào)査”),王老師所調(diào)查的4個班共征集到作品 件,并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,表示班的扇形周心角的度數(shù)為 ;
(3)如果全校參展作品中有4件獲得一等獎,其中有1名作者是男生,3名作者是女生.現(xiàn)要從獲得一等獎的作者中隨機(jī)抽取兩人去參加學(xué)校的總結(jié)表彰座談會,求恰好抽中一男一女的概率.(要求用樹狀圖或列表法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點D是AB的中點,點P是直線BC上一點,將△BDP沿DP所在的直線翻折后,點B落在B1處,若B1D⊥BC,則點P與點B之間的距離為( )
A.1B.C.1或 3D.或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,,,點為的中點.
(1)如圖①,若點分別為上的點,且,試探究和的數(shù)量關(guān)系;并說明四邊形的面積是定值嗎?若是,請求出;若不是,請說明理由.
(2)若點分別為延長線上的點,且,那么嗎?請利用圖②說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com