【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達式;
(2)點P在線段AB上運動的過程中,是否存在點Q,使得△BOD∽△QBM?若存在,求出點Q的坐標;若不存在,請說明理由.
(3)已知點F(0,),點P在x軸上運動,試求當m為何值時以D、M、Q、F為頂點的四邊形是平行四邊形.
【答案】(1)y=﹣x2+x+2;(2)存在,點Q的坐標為(3,2);(3)m=﹣1或m=3或m=1+或1﹣時,四邊形DMQF是平行四邊形.
【解析】
(1)根據(jù)待定系數(shù)法求解可得;
(2)利用△BOD∽△QBM得,再證△MBQ∽△BPQ得,解之即可得此時m的值.
(3)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關于m的方程,解之可得.
(1)由拋物線過點A(﹣1,0)、B(4,0)可設解析式為y=a(x+1)(x﹣4),
將點C(0,2)代入,得:﹣4a=2,
解得:a=﹣,
則拋物線解析式為y=﹣(x+1)(x﹣4)=﹣x2+x+2;
(2)如圖所示:
∵當△BOD∽△QBM時,
則,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,
∴,
解得:m1=3、m2=4,
當m=4時,點P、Q、M均與點B重合,不能構(gòu)成三角形,舍去,
∴m=3,點Q的坐標為(3,2);
(3)由題意知點D坐標為(0,﹣2),
設直線BD解析式為y=kx+b,
將B(4,0)、D(0,﹣2)代入,得:,
解得:,
∴直線BD解析式為y=x﹣2,
∵QM⊥x軸,P(m,0),
∴Q(m,﹣m2+m+2)、M(m,m﹣2),
則QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,
∵F(0,)、D(0,﹣2),
∴DF=,
∵QM∥DF,
∴當|﹣m2+m+4|=時,四邊形DMQF是平行四邊形,
解得:m=﹣1或m=3或m=1+或1﹣
即m=﹣1或m=3或m=1+或1﹣時,四邊形DMQF是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點A(–3,0)、B(1,0).
(1)求平移后的拋物線的表達式.
(2)設平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當BP與CP之和最小時,P點坐標是多少?
(3)若y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠A=30°,AC=8,∠B=90°,點D在AB上,BD=,點P在△ABC的邊上,則當AP=2PD時,PD的長為____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為弦,D為弧AC的中點,AC、BD相交于點E.AP交BD的延長線于點P.∠PAC=2∠CBD.
(1)求證:AP是⊙O的切線;
(2)若PD=3,AE=5,求△APE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120cm,高AD=80cm,要把它加工成一個矩形零件,使矩形PQMN的一邊在BC上,其余兩個頂點分別在AB、AC上.設PQ=xcm,矩形PQMN的面積為ycm2,請寫出y關于x的函數(shù)表達式(并注明x的取值范圍)_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸取一個小球然后放回,再隨機摸出一個小球.
(Ⅰ)請用列表法(或畫樹狀圖法)列出所有可能的結(jié)果;
(Ⅱ)求兩次取出的小球標號相同的概率;
(Ⅲ)求兩次取出的小球標號的和大于6的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y=(m為常數(shù),且m≠0)的圖象交于點A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫出當y1<y2<0時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,cosB=,點M是AB邊的中點,將△ABC繞著點M旋轉(zhuǎn),使點C與點A重合,點A與點D重合,點B與點E重合,得到△DEA,且AE交CB于點P,那么線段CP的長是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com