【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF;
求證:(1)CF=EB.
(2)AB=AF+2EB.
【答案】(1)見解析;(2)見解析.
【解析】
(1)利用HL證明RT△CDF≌RT△EDB即可得出CF=EB;
(2)利用HL證明RT△ADE≌RT△ADC即可得出AC=AE,再由AB=AE+EB=AF+CF+EB進行等量代換即可.
(1)∵AD是∠BAC的平分線,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,
,
∴Rt△CDF≌Rt△EDB(HL)
∴CF=EB
(2)∵AD是∠BAC的平分線,DE⊥AB,DC⊥AC,
∴CD=DE.
在△ADC與△ADE中,,
∴△ADC≌△ADE(HL),
∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點D,E分別在BC,AC邊上,且AE=CD,AD,BE相交于點P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求證:△ABE≌△CAD;
(2) 求BE的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若互為相反數(shù),互為倒數(shù),且的立方等于它本身.
若,求的值;
若試討論:當(dāng)為有理數(shù)時,是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由;
若,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點E、N在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名同學(xué)中選拔一人參加“中華好詩詞”大賽,在相同的測試條件下,對兩人進行了五次模擬,并對成績(單位:分)進行了整理,計算出=83分,=82分,繪制成如下尚不完整的統(tǒng)計圖表.
甲、乙兩人模擬成績統(tǒng)計表
① | ② | ③ | ④ | ⑤ | |
甲成績/分 | 79 | 86 | 82 | a | 83 |
乙成績/分 | 88 | 79 | 90 | 81 | 72 |
根據(jù)以上信息,回答下列問題:
(1)a=
(2)請完成圖中表示甲成績變化情況的折線.
(3)經(jīng)計算S甲2=6,S乙2=42,綜合分析,你認(rèn)為選拔誰參加比賽更合適,說明理由.
(4)如果分別從甲、乙兩人5次的成績中各隨機抽取一次成績進行分析,求抽到的兩個人的成績都大于82分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃巖島是我國南沙群島的一個小島,漁產(chǎn)豐富.一天某漁船離開港口前往該海域捕魚.捕撈一段時間后,發(fā)現(xiàn)一外國艦艇進入我國水域向黃巖島駛來,漁船向漁政部門報告,并。立即返航.漁政船接到報告后,立即從該港口出發(fā)趕往黃巖島.下圖是漁政船及漁船與港口的距離s和漁船離開港口的時間t之間的函數(shù)圖象.(假設(shè)漁船與漁政船沿同一航線航行)
(1)直接寫出漁船離開港口的距離s和漁船離開港口的時間t之間的函數(shù)關(guān)系式
(2)求漁船與漁政船相遇對,兩船與黃巖島的距離、
(3在漁政船駛往黃巖島的過程中,求漁船從港口 出發(fā)經(jīng)過多長時間與漁政船相距30海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:折紙中的數(shù)學(xué)
問題情境:數(shù)學(xué)活動課上,老師讓同學(xué)們折疊正方形紙片ABCD進行探究活動,興趣小組的同學(xué)經(jīng)過動手操作探究,提出了如下兩個問題:
問題1:如圖(1),若點E為BC的中點,設(shè)AE將正方形紙片ABCD折疊,點B的對應(yīng)點為B′,連接B′C,求證:B′C∥AE.
問題2:如圖(2),若點E,點F分別為邊BC,邊AD的中點,沿AE、CF將正方形紙片ABCD折疊,點B的對應(yīng)點為B′,點D的對應(yīng)點D′,D′F與AB′交于點H,B′E與CD′交于點G,求證:四邊形D′GB′H為矩形.
(1)解決問題:請你對興趣小組提出的兩個問題進行證明.
(2)拓展探究:解決完興趣小組提出的兩個問題后,實踐小組的同學(xué)們進行如下實踐操作:如圖(3),點E,點F分別為BC、AD上的點,將正方形紙片沿AE、CF折疊,使得點B落在對角線上的點B′處,點D落在對角線AC上的點D′處,AE與對角線BD的交點為M,CF與對角線BD的交點為N,分別連接MB′,B′N,D′N,D′M.他們認(rèn)為四邊形MB′ND′為正方形.
實踐小組的同學(xué)們發(fā)現(xiàn)的結(jié)論是否正確?請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列已知條件,分別指出兩個圖形中的等腰三角形,并利用第一個圖證明結(jié)論。
(1)如圖①,BD平分∠ABC,DE//AB
(2) 如圖②,AD平分∠BAC , EC//AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com