【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過(guò)點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長(zhǎng)QC′交BA的延長(zhǎng)線于點(diǎn)M.

(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論
(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);
(3)當(dāng)BP=m,PC=n時(shí),求AM的長(zhǎng).

【答案】
(1)

解:AP=BQ.

理由:∵四邊形ABCD是正方形,

∴AB=BC,∠ABC=∠C=90°,

∴∠ABQ+∠CBQ=90°.

∵BQ⊥AP,∴∠PAB+∠QBA=90°,

∴∠PAB=∠CBQ.

在△PBA和△QCB中,

,

∴△PBA≌△QCB,

∴AP=BQ.


(2)

解:過(guò)點(diǎn)Q作QH⊥AB于H,如圖.

∵四邊形ABCD是正方形,

∴QH=BC=AB=3.

∵BP=2PC,

∴BP=2,PC=1,

∴BQ=AP===,

∴BH===2.

∵四邊形ABCD是正方形,

∴DC∥AB,

∴∠CQB=∠QBA.

由折疊可得∠C′QB=∠CQB,

∴∠QBA=∠C′QB,

∴MQ=MB.

設(shè)QM=x,則有MB=x,MH=x﹣2.

在Rt△MHQ中,

根據(jù)勾股定理可得x2=(x﹣2)2+32

解得x=

∴QM的長(zhǎng)為.


(3)

解:

過(guò)點(diǎn)Q作QH⊥AB于H,如圖:

∵四邊形ABCD是正方形,BP=m,PC=n,

∴QH=BC=AB=m+n.

∴BQ2=AP2=AB2+PB2,

∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2,

∴BH=PB=m.

設(shè)QM=x,則有MB=QM=x,MH=x﹣m.

在Rt△MHQ中,

根據(jù)勾股定理可得x2=(x﹣m)2+(m+n)2

解得x=m+n+,

∴AM=MB﹣AB=m+n+﹣m﹣n=

∴AM的長(zhǎng)為


【解析】(1)要證AP=BQ,只需證△PBA≌△QCB即可;
(2)過(guò)點(diǎn)Q作QH⊥AB于H,如圖.易得QH=BC=AB=3,BP=2,PC=1,然后運(yùn)用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,從而有∠CQB=∠QBA.由折疊可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.設(shè)QM=x,則有MB=x,MH=x﹣2.在Rt△MHQ中運(yùn)用勾股定理就可解決問(wèn)題;
(3)過(guò)點(diǎn)Q作QH⊥AB于H,如圖,同(2)的方法求出QM的長(zhǎng),就可得到AM的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價(jià)y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.

(1)請(qǐng)解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義
(2)求線段AB所表示的y1與x之間的函數(shù)表達(dá)式
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時(shí),獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BD是△ABC的一條角平分線.點(diǎn)O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形.

(1)求證:點(diǎn)O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣1.414)0+(﹣1+2cos30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點(diǎn),以AC為直徑的⊙O與AB邊交于點(diǎn)D,連接DE

(1)求證:△ABC∽△CBD;
(2)求證:直線DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(3,2)、B(3,5)、C(1,2).

(1)在平面直角坐標(biāo)系中畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)把△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度,得圖中的△AB2C2 , 點(diǎn)C2在AB上.
①旋轉(zhuǎn)角為多少度?
②寫(xiě)出點(diǎn)B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】901班的全體同學(xué)根據(jù)自己的興趣愛(ài)好參加了六個(gè)學(xué)生社團(tuán)(每個(gè)學(xué)生必須參加且只參加一個(gè)),為了了解學(xué)生參加社團(tuán)的情況,學(xué)生會(huì)對(duì)該班參加各個(gè)社團(tuán)的人數(shù)進(jìn)行了統(tǒng)計(jì),繪制成了如圖不完整的扇形統(tǒng)計(jì)圖,已知參加“讀書(shū)社”的學(xué)生有15人,請(qǐng)解答下列問(wèn)題:

(1)該班的學(xué)生共有 人;
(2)若該班參加“吉他社”與“街舞社”的人數(shù)相同,請(qǐng)你計(jì)算,“吉他社”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)901班學(xué)生甲、乙、丙是“愛(ài)心社”的優(yōu)秀社員,現(xiàn)要從這三名學(xué)生中隨機(jī)選兩名學(xué)生參加“社區(qū)義工”活動(dòng),請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法求出恰好選中甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a、b是任意兩個(gè)實(shí)數(shù),用max{a,b}表示a、b兩數(shù)中較大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,參照上面的材料,解答下列問(wèn)題:
(1)max{5,2}= , max{0,3}=;
(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范圍;
(3)求函數(shù)y=x2﹣2x﹣4與y=﹣x+2的圖象的交點(diǎn)坐標(biāo),函數(shù)y=x2﹣2x﹣4的圖象如圖所示,請(qǐng)你在圖中作出函數(shù)y=﹣x+2的圖象,并根據(jù)圖象直接寫(xiě)出max{﹣x+2,x2﹣2x﹣4}的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案