【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M,N是邊AD上的兩點,連接MO,NO,并分別延長交邊BC于兩點M′,N′,則圖中的全等三角形共有( )

A.2對
B.3對
C.4對
D.5對

【答案】C
【解析】∵四邊形ABCD是正方形,

∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,

在△ABD和△BCD中,

,

∴△ABD≌△BCD,

∵AD∥BC,

∴∠MDO=∠M′BO,

在△MOD和△M′OB中,

,

∴△MDO≌△M′BO,同理可證△NOD≌△N′OB,∴△MON≌△M′ON′,

∴全等三角形一共有4對.

故答案為:C.

首先觀察圖形,依據(jù)圖形判斷出其中全等的三角形,最后,再依據(jù)全等三角形的判定定理進行判斷即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上的一點,AE⊥EF,下列結(jié)論:①∠BAE=30°;②CE2=AB CF;③CF= FD; ④△ABE∽△AEF.其中正確的有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.

(1)求證:△ABE∽△DBC;
(2)求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀數(shù)月活動中學(xué)校準備購買一批課外讀物,為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學(xué)只選一類)。下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖。

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了 名同學(xué);

2)條形統(tǒng)計圖中

3)扇形統(tǒng)計圖中,藝術(shù)類讀數(shù)所在扇形的圓心角是 度;

4)學(xué)校計劃購買課外讀物8000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀數(shù)多少冊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)【問題提出】如圖1.△ABC是等邊三角形,點D在線段AB上.點E在直線BC上.且∠DEC=∠DCE.求證:BE=AD;

(2)【類比學(xué)習(xí)】如圖2.將條件“點D在線段AB上”改為“點D在線段AB的延長線上”,其他條件不變.判斷線段AB,BE,BD之間的數(shù)量關(guān)系,并說明理由.

(3)【擴展探究】如圖3.△ABC是等腰三角形,AB=AC,∠BAC=120°,點D在線段AB的反向延長線上,點E在直線BC上,且∠DEC=∠DCE,【類比學(xué)習(xí)】中的線段AB、BE、BD之間的數(shù)量關(guān)系是否還成立?若成立,請說明理由;若不成立,請直接寫出線段AB,BE,BD之間的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)熱氣球的探測器顯示,從熱氣球A處看一棟高樓頂部的仰角為45°,看這棟高樓底部的俯角為60°,A處與高樓的水平距離為60m,這棟高樓有多高?(結(jié)果精確到0.1m,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】看圖填空:已知如圖,AD⊥BCD,EG⊥BCG,∠E=∠1,

求證:AD平分∠BAC.

證明:∵AD⊥BCD,EG⊥BCG( 已知

∴∠ADC=90°,∠EGC=90°___________

∴∠ADC=∠EGC(等量代換

∴AD∥EG_____________

∴∠1=∠2___________

∠E=∠3___________

∵∠E=∠1( 已知

∴∠2=∠3___________

∴AD平分∠BAC___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、2、3、4的外角的角度和為220°,則∠BOD的度數(shù)是(  )

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知0≤x≤ ,那么函數(shù)y=﹣2x2+8x﹣6的最大值是

查看答案和解析>>

同步練習(xí)冊答案