【題目】如圖,直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為(2,1),(﹣13),(﹣3,2).

1)在圖中作出△ABC關(guān)于x軸對(duì)稱的△ABC′,并寫(xiě)出點(diǎn)A′的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   ,點(diǎn)C′的坐標(biāo)為   ;

2)求△ABC的面積;

3)若點(diǎn)Pa,a2)與點(diǎn)Q關(guān)于y軸對(duì)稱,若PQ8,求點(diǎn)P的坐標(biāo).

【答案】1)見(jiàn)解析,A′(2,﹣1),B′(﹣1,﹣3),C′(﹣3,﹣2);(23.5;(3)點(diǎn)P的坐標(biāo)為(4,2)或(﹣4,﹣6).

【解析】

(1)根據(jù)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)特征,橫坐標(biāo)相反,縱坐標(biāo)相同即可求得對(duì)應(yīng)點(diǎn)的坐標(biāo).

(2)根據(jù)割補(bǔ)法將求△ABC的面積問(wèn)題轉(zhuǎn)化為求其它圖形的面積和或面積差問(wèn)題.

(3)根據(jù)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特征,橫坐標(biāo)相反,縱坐標(biāo)相同將Q點(diǎn)的坐標(biāo)用a表示出來(lái),然后列出線段PQ的長(zhǎng)的關(guān)系式,求解即可.

解:

(1)如圖,△A′B′C′為所作;

A′(2,﹣1),B′(﹣1,﹣3),C′(﹣3,﹣2);

(2)

=

=3.5

(3)∵點(diǎn)P(a,a﹣2)與點(diǎn)Q關(guān)于y軸對(duì)稱,

∴Q(﹣a,a﹣2),

∵PQ=8,

∴|a﹣(﹣a)|=8,

解得a=4或a=﹣4,

∴點(diǎn)P的坐標(biāo)為(4,2)或(﹣4,﹣6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A、點(diǎn)B分別在x軸、y軸的正半軸上,點(diǎn)C在第一象限,∠ACB90°,ACBC,點(diǎn)A坐標(biāo)為(m,0),點(diǎn)C橫坐標(biāo)為n,且m2+n22m8n+170

1)分別求出點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo);

2)如圖(2),點(diǎn)D為邊AB中點(diǎn),以點(diǎn)D為頂點(diǎn)的直角∠EDF兩邊分別交邊BCE,交邊ACF,①求證:DEDF;②求證:S四邊形DECFSABC

3)在坐標(biāo)平面內(nèi)有點(diǎn)G(點(diǎn)G不與點(diǎn)A重合),使得BCG是以BC為直角邊的等腰直角三角形,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長(zhǎng)度與肚臍至足底的長(zhǎng)度之比是黃金分割比(黃金分割比0.618)著名的斷臂維納斯便是如此.此外最美人體的頭頂至咽喉的長(zhǎng)度與咽喉至肚臍的長(zhǎng)度之比也是黃金分割比.若某人滿足上述兩個(gè)黃金分割比例,且腿長(zhǎng)為103cm,頭頂至脖子下端的長(zhǎng)度為25cm,則其身高可能是(

A.165cmB.170cmC.175cmD.180cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,4),頂點(diǎn)Cx軸的正半軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)頂點(diǎn)B,則反比例函數(shù)的表達(dá)式為( 。

A. y= B. y= C. y= D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊ABC中,點(diǎn)P由點(diǎn)A出發(fā)沿CA方向運(yùn)動(dòng),同時(shí)點(diǎn)Q以相同的速度從點(diǎn)B出發(fā)沿BC方向運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時(shí),P,Q兩點(diǎn)都停止運(yùn)動(dòng),連接PQ,交AB于點(diǎn)M

1)如圖①,當(dāng)PQBC時(shí),求證:APAM

2)如圖②,試說(shuō)明:在點(diǎn)P和點(diǎn)Q運(yùn)動(dòng)的過(guò)程中,PMQM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長(zhǎng)恰與另一塊等腰直角三角板ODC的斜邊OC的長(zhǎng)相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過(guò)A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長(zhǎng),求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴點(diǎn)A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=,

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.

(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)動(dòng)點(diǎn)M,N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線段EF的長(zhǎng)度;若變化,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】海南建省30年來(lái),各項(xiàng)事業(yè)取得令人矚目的成就,以2016年為例,全省社會(huì)固定資產(chǎn)總投資約3730億元,其中包括中央項(xiàng)目、省屬項(xiàng)目、地(市)屬項(xiàng)目、縣(市)屬項(xiàng)目和其他項(xiàng)目.圖1、圖2分別是這五個(gè)項(xiàng)目的投資額不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)完成下列問(wèn)題:

(1)在圖1中,先計(jì)算地(市)屬項(xiàng)目投資額為   億元,然后將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)在圖2中,縣(市)屬項(xiàng)目部分所占百分比為m%、對(duì)應(yīng)的圓心角為β,則m=   ,β=   度(m、β均取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時(shí)達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標(biāo)系,問(wèn)此球能否準(zhǔn)確投中?

(2)此時(shí),對(duì)方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:如圖①,在ABDCAE中,BD=AE,DBA=EAC,AB=AC,易證:ABD≌△CAE.(不需要證明)

特例探究:如圖②,在等邊ABC中,點(diǎn)D、E分別在邊BC、AB上,且BD=AE,ADCE交于點(diǎn)F.求證:ABD≌△CAE

歸納證明:如圖③,在等邊ABC中,點(diǎn)DE分別在邊CB、BA的延長(zhǎng)線上,且BD=AEABDCAE是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.

拓展應(yīng)用:如圖④,在等腰三角形中,AB=AC,點(diǎn)OAB邊的垂直平分線與AC的交點(diǎn),點(diǎn)D、E分別在OB、BA的延長(zhǎng)線上.若BD=AE,BAC=50°,AEC=32°,求∠BAD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案