【題目】如圖,將長(zhǎng)為8cm,寬4cm的矩形紙片ABCD折疊,使點(diǎn)A與C重合,則折痕EF的長(zhǎng)為( 。
A.8cmB.4cmC.5cmD.2cm
【答案】D
【解析】
如圖,首先證明四邊形AECF為菱形,運(yùn)用勾股定理分別求出CE,AC的長(zhǎng)度,運(yùn)用菱形的面積公式,即可解決問題.
解:如圖,連接AF,AC,
∵將長(zhǎng)為8cm,寬4cm的矩形紙片ABCD折疊,
∴EF⊥AC,OA=OC,AE=CE,AF=CF,
∵四邊形ABCD為矩形,
∴FC∥AE,∠OAE=∠OCF;
在△AOE與△COF中,
,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四邊形AECF為平行四邊形,
∵AE=CE,
∴四邊形AECF是菱形,
∵CE2=BE2+BC2,
∴CE2=(8﹣CE)2+16,
∴CE=5cm,
∵AB=8cm,BC=4cm,
∴AC===4,
∵S菱形AECF=5×4=×4×EF,
∴EF=2cm,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D,以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A和點(diǎn)D,與AB邊的另一個(gè)交點(diǎn)為E.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為4,∠B=30°.求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,AB在x軸上,點(diǎn)G與點(diǎn)A重合,點(diǎn)F在AD上,三角板的直角邊EF交BC于點(diǎn)M,反比例函數(shù)(x0)的圖象恰好經(jīng)過點(diǎn)F,M.若直尺的寬CD=2,三角板的斜邊FG=,則k=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是對(duì)角線BD上的一點(diǎn),過點(diǎn)C作CQ∥DB,且CQ=DP,連接AP、BQ、PQ.
(1)求證:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求證:四邊形ABQP為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織健康知識(shí)競(jìng)賽,每班參加競(jìng)賽的人數(shù)相同,成績(jī)?yōu)?/span>,,,四個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為100分,90分,80分,70分,其中100分和90分為優(yōu)秀.學(xué)校將八年級(jí)一班和二班的成績(jī)整理并繪制成如下的統(tǒng)計(jì)圖與統(tǒng)計(jì)表.
一班競(jìng)賽成績(jī)統(tǒng)計(jì)圖
二班競(jìng)賽成績(jī)統(tǒng)計(jì)圖
一班和二班競(jìng)賽成績(jī)統(tǒng)計(jì)表(部分空缺)
成績(jī) 班級(jí) | 眾數(shù) | 中位數(shù) | 優(yōu)秀率 | 平均分 |
一班 | 90 | 87.6 | ||
二班 | 80 |
請(qǐng)根據(jù)以上圖表的信息解答下列問題:
(1)求,,的值.
(2)若全校共有750名學(xué)生參加競(jìng)賽,估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),并與x軸交于另一點(diǎn)C(點(diǎn)C點(diǎn)A的右側(cè)),點(diǎn)P是拋物線上一動(dòng)點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)若點(diǎn)P在第二象限內(nèi),過點(diǎn)P作PD⊥軸于D,交AB于點(diǎn)E.當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),線段PE最長(zhǎng)?此時(shí)PE等于多少?
(3)如果平行于x軸的動(dòng)直線l與拋物線交于點(diǎn)Q,與直線AB交于點(diǎn)N,點(diǎn)M為OA的中點(diǎn),那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)(、為參數(shù),其中)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為.
(1)若,求的值(結(jié)果用含的式子表示);
(2)若是等腰三角形,直線與軸交于點(diǎn),且.求拋物線的解析式;
(3)如圖,已知,、分別是和上的動(dòng)點(diǎn),且,若以為直徑的圓經(jīng)過點(diǎn),并交軸于、兩點(diǎn),求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
折紙是同學(xué)們喜歡的手工活動(dòng)之一,通過折紙我們既可以得到許多美麗的圖形,同時(shí)折紙的過程還蘊(yùn)含著豐富的數(shù)學(xué)知識(shí).折一折:把邊長(zhǎng)為的正方形紙片對(duì)折,使邊與重合,展開后得到折痕.如圖①:點(diǎn)為上一點(diǎn),將正方形紙片沿直線折疊,使點(diǎn)落在上的點(diǎn)處,展開后連接,,,如圖②
圖① 圖②
(一)填一填,做一做:
(1)圖②中,_______.線段 _______.
(2)圖②中,試判斷的形狀,并給出證明.
剪一剪、折一折:將圖②中的剪下來,將其沿直線折疊,使點(diǎn)落在點(diǎn)處,分別得到圖③、圖④.
(二)填一填
圖③ 圖④
(3)圖③中陰影部分的周長(zhǎng)為_______.
(4)圖③中,若,則_______°.
(5)圖③中的相似三角形(包括全等三角形)共有_______對(duì);
(6)如圖④點(diǎn)落在邊上,若_______,則_______用含,的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠BAD=,E為對(duì)角線AC上的一點(diǎn)(不與A,C重合),將射線EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)角之后,所得射線與直線AD交于F點(diǎn).試探究線段EB與EF的數(shù)量關(guān)系.
小宇發(fā)現(xiàn)點(diǎn)E的位置,和的大小都不確定,于是他從特殊情況開始進(jìn)行探究.
(1)如圖1,當(dāng)==90°時(shí),菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線的性質(zhì)可知EM=EN,進(jìn)而可得,并由全等三角形的性質(zhì)得到EB與EF的數(shù)量關(guān)系為 .
(2)如圖2,當(dāng)=60°,=120°時(shí),
①依題意補(bǔ)全圖形;
②請(qǐng)幫小宇繼續(xù)探究(1)的結(jié)論是否成立.若成立,請(qǐng)給出證明;若不成立,請(qǐng)舉出反例說明;
(3)小宇在利用特殊圖形得到了一些結(jié)論之后,在此基礎(chǔ)上對(duì)一般的圖形進(jìn)行了探究,設(shè)∠ABE=,若旋轉(zhuǎn)后所得的線段EF與EB的數(shù)量關(guān)系滿足(1)中的結(jié)論,請(qǐng)直接寫出角,,滿足的關(guān)系: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com