如圖:把一張給定大小的矩形卡片ABCD放在間距為10mm的橫格紙中(所有橫線互相平行),恰好四個頂點都在橫格線上,AD與l2交于點E, BD與l4交于點F.

小題1:求證:△ABE≌△CDF;
小題2:已知α=25°,求矩形卡片的周長.(可用計算器求值,答案精確到1mm,參考數(shù)據(jù): sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)

小題1:∵l2∥l4  BC∥AD   ∴四邊形BFDE是平行四邊形
∴BE=FD  ……………………………………………………………………2分
∵AB="CD" ,∠BAE=∠FCD=90゜
∴△ABE≌△CDF ……………………………………………………………4分
小題2:(批改時注意若學(xué)生用計算器計算,中間答案會有

少許不同,但最終答案一樣)
過A作AG⊥l4,交l2于H
∵α=25°   ∴∠ABE=25°
  
解得:AB≈47.62 ………………5分
∵∠ABE+∠AEB=90゜   ∠HAE+∠AEB=90゜  ∴∠HAE=25゜
   解得:AD≈43.96 ………………7分
∴矩形卡片ABCD的周長為(47.62+43.96)×2≈183(mm) ………8分
(1)利用BFDE是平行四邊形,從而推出BE=FD,然后根據(jù)邊邊角證出結(jié)果;
(2)在Rt△ABE中根據(jù)三角函數(shù)即可求得AB的長;在直角△AFD中,根據(jù)三角函數(shù)即可求得AD的長,從而求得長方形卡片的周長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

平行四邊形ABCD的周長為36cm,若AB:BC=1:5,則AB="____cm" BC=___cm;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在□ABCD中,EAD邊上的中點.BE平分∠ABC,AB = 2,則□ABCD的周長是_________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:將△ABC紙片沿DE折疊成圖①,此時點A落在四邊形BCDE內(nèi)部,則∠A與∠1、∠2之間有一種數(shù)量關(guān)系保持不變,
小題1:請找出這種數(shù)量關(guān)系并說明理由.
小題2:若折成圖②或圖③,即點A落在BE或CD上時,分別寫出∠A與∠2;∠A與∠1之間的關(guān)系;(不必證明)
小題3:若折成圖④,寫出∠A與∠1、∠2之間的關(guān)系式;(不必證明);若折成圖⑤,寫出∠A與∠1、∠2之間的關(guān)系式.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,AB=AC,點P為△ABC所在平面內(nèi)一點,過點P分別作PE∥AC交AB于點E,PF∥AB交BC于點D,交AC于點F.
小題1:如圖1,若點P在BC邊上,此時PD=0,易證PD,PE,PF與AB滿足的數(shù)量關(guān)系PD+PE+PF=AB;當(dāng)點P在△ABC內(nèi),先在圖2中作出圖形,并寫出PD,PE,PF與AB滿足的數(shù)量關(guān)系,然后證明你的結(jié)論
小題2:當(dāng)點P在△ABC外,先在圖3中作出圖形,然后寫出PD,PE,PF與AB滿足的數(shù)量關(guān)系.(不用說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AD⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°,那么BC⊥AB,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD中,DCABBC=1,ABACAD=2,則BD的長為( ▲ )
A.B.C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,EBC上一點,以AE為邊在直線MN的上方作正方形AEFG

(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并猜測∠FCN的度數(shù)是否總保持不變,
若∠FCN的大小保持不變,請說明理由;
若∠FCN的大小發(fā)生改變,請舉例說明;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE,四邊形ABCD是平行四邊形嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案