【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長(zhǎng).
【答案】見(jiàn)解析;
【解析】試題分析:(1)直接利用三角形中位線定理得出DEBC,進(jìn)而得出DE=FC;
(2)利用平行四邊形的判定與性質(zhì)得出DC=EF,進(jìn)而利用等邊三角形的性質(zhì)以及勾股定理得出EF的長(zhǎng)
試題解析:(1)證明:∵D、E分別為AB、AC的中點(diǎn), ∴DEBC,
∵延長(zhǎng)BC至點(diǎn)F,使CF=BC, ∴DEFC, 即DE=CF;
(2)解:∵DEFC, ∴四邊形DEFC是平行四邊形, ∴DC=EF,
∵D為AB的中點(diǎn),等邊△ABC的邊長(zhǎng)是2, ∴AD=BD=1,CD⊥AB,BC=2, ∴DC=EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn) O 為坐標(biāo)原點(diǎn),點(diǎn) A 在 x 軸負(fù)半軸上,點(diǎn) B、C 分別在 x 軸、y 軸正半軸上,且 OB=2OA,OB﹣OC=OC﹣OA=2.
(1)求點(diǎn) C 的坐標(biāo);
(2)點(diǎn) P 從點(diǎn) A 出發(fā)以每秒 1 個(gè)單位的速度沿 AB 向點(diǎn) B 勻速運(yùn)動(dòng),同時(shí)點(diǎn) Q 從點(diǎn) B 出發(fā) 以每秒 3 個(gè)單位的速度沿 BA 向終點(diǎn) A 勻速運(yùn)動(dòng),當(dāng)點(diǎn) Q 到達(dá)終點(diǎn) A 時(shí),點(diǎn) P、Q 均停止運(yùn) 動(dòng),設(shè)點(diǎn) P 運(yùn)動(dòng)的時(shí)間為 t 秒(t>0),線段 PQ 的長(zhǎng)度為 y,用含 t 的式子表示 y,并寫(xiě)出 相應(yīng)的 t 的范圍;
(3)在(2)的條件下,過(guò)點(diǎn) P 作 x 軸的垂線 PM,PM=PQ,是否存在 t 值使點(diǎn) O 為 PQ 中 點(diǎn)?若存在求 t 值并求出此時(shí)三角形 CMQ 的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線MN與直線PQ相交于O,點(diǎn)A在射線OP上,點(diǎn)B在射線OM上.
(1)如圖1,已知AG、BG分別是∠BAO和∠ABO角的平分線,求的度數(shù);
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,∠CED= 度;
(3)如圖3,,過(guò)點(diǎn)B作直線CD⊥MN,G為射線BD上一點(diǎn),OF平分∠QOG,OE⊥OF,探索的大小是否發(fā)生變化?若不變,求其值;若改變,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE∥BF,∠1與∠2互補(bǔ).
(1)試說(shuō)明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,則DE與AC垂直嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副三角板如圖1擺放,∠C=∠DFE=90,∠B=30,∠E=45,點(diǎn)F在BC上,點(diǎn)A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線FB上時(shí)停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=_ __時(shí),DF∥AC;當(dāng)∠AFD=__ _時(shí),DF⊥AB;
(2)在旋轉(zhuǎn)過(guò)程中,DF與AB的交點(diǎn)記為P,如圖2,若AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(3,3),B(5,3).
(1)在y軸的負(fù)方向上有一點(diǎn)C(如圖),使得四邊形AOCB的面積為18,求C點(diǎn)的坐標(biāo);
(2)將△ABO先向上平移2個(gè)單位,再向左平移4個(gè)單位,得△A1B1O1
①直接寫(xiě)出B1的坐標(biāo):B1( )
②求平移過(guò)程中線段OB掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品的進(jìn)價(jià)為800元,出售是標(biāo)價(jià)為1200元,后來(lái)由于該商品積壓,商品準(zhǔn)備打折銷(xiāo)售,但是保證利潤(rùn)率不低于5%,則至少可打( )
A.6折B.7折C.8折D.9折
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com