【題目】某校學(xué)生會(huì)正籌備一個(gè)“慶畢業(yè)”文藝匯演活動(dòng),現(xiàn)準(zhǔn)備從4名(其中兩男兩女)節(jié)目主持候選人中,隨機(jī)選取兩人擔(dān)任節(jié)目主持人,請(qǐng)用列表法或畫樹狀圖求選出的兩名主持人“恰好為一男一女”的概率.

【答案】解:列表如下:

﹣﹣﹣

(男,男)

(女,男)

(女,男)

(男,男)

﹣﹣﹣﹣

(女,男)

(女,男)

(男,女)

(男,女)

﹣﹣﹣

(女,女)

(男,女)

(男,女)

(女,女)

﹣﹣﹣

所有等可能的情況有12種,其中選出的兩名主持人“恰好為一男一女”的情況有8種,
則P(選出的兩名主持人“恰好為一男一女”)=
【解析】列表得出所有等可能的情況數(shù),找出選出的兩名主持人“恰好為一男一女”的情況數(shù),即可求出所求的概率.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用列表法與樹狀圖法的相關(guān)知識(shí)可以得到問題的答案,需要掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.

(1)試說明DF是⊙O的切線
(2)若AC=3AE,求tanC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,∠CAB=∠ACB,過點(diǎn)B作BE⊥AB交AC于點(diǎn)E.

(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=,求線段OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(5,0),與y軸交于點(diǎn)C.

(1)求此拋物線的解析式;
(2)以點(diǎn)A為圓心,作與直線BC相切的⊙A,求⊙A的半徑
(3)在直線BC上方的拋物線上任取一點(diǎn)P,連接PB,PC,請(qǐng)問:△PBC的面積是否存在最大值?若存在,求出這個(gè)最大值的此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組:,并把它的解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個(gè)扇形滿足弧長(zhǎng)的比等于它們半徑的比,則這稱這兩個(gè)扇形相似.如圖,如果扇形AOB與扇形A101B1是相似扇形,且半徑OA:O1A1=k(k為不等于0的常數(shù)).那么下面四個(gè)結(jié)論:①∠AOB=∠A101B1;②△AOB∽△A101B1;③=k;④扇形AOB與扇形A101B1的面積之比為k2 . 成立的個(gè)數(shù)為( 。

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,E是CD上的一點(diǎn),連接BE交AC于O,連接DO并延長(zhǎng)交BC于E.

(1)求證:△FOC≌△EOC;
(2)將此圖中的AD、BE分別延長(zhǎng)交于點(diǎn)N,作EM∥BC交CN于M,再連接FM即得到圖2.
求證:①;②FD=FM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時(shí),一個(gè)月工作25天.月工資底薪800元,另加計(jì)件工資.加工1件A型服裝計(jì)酬16元,加工1件B型服裝計(jì)酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時(shí),加工3件A型服裝和1件B型服裝需7小時(shí).(工人月工資=底薪+計(jì)件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時(shí)?
(2)一段時(shí)間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號(hào)的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請(qǐng)你運(yùn)用所學(xué)知識(shí)判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,規(guī)定:拋物線y=a(x﹣h)2+k的伴隨直線為y=a(x﹣h)+k.例如:拋物線y=2(x+1)2﹣3的伴隨直線為y=2(x+1)﹣3,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線y=(x+1)2﹣4的頂點(diǎn)坐標(biāo)為 , 伴隨直線為 , 拋物線y=(x+1)2﹣4與其伴隨直線的交點(diǎn)坐標(biāo)為;
(2)如圖,頂點(diǎn)在第一象限的拋物線y=m(x﹣1)2﹣4m與其伴隨直線相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的右側(cè)),與x軸交于點(diǎn)C,D.
①若∠CAB=90°,求m的值;
②如果點(diǎn)P(x,y)是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),△PBC的面積記為S,當(dāng)S取得最大值 時(shí),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案