分析:(1)過(guò)C作CN垂直于x軸,交x軸于點(diǎn)N,由A、B及C的坐標(biāo)得出OA,OB,CN的長(zhǎng),由∠CAB=90°,根據(jù)平角定義得到一對(duì)角互余,在直角三角形ACN中,根據(jù)兩銳角互余,得到一對(duì)角互余,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等,且AC=BC,利用AAS得到三角形ACN與三角形AOB全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得出CN=0A,AN=0B,由AN+OA求出ON的長(zhǎng),再由C在第二象限,可得出d的值;
(2)由第一問(wèn)求出的C與B的橫坐標(biāo)之差為3,根據(jù)平移的性質(zhì)得到縱坐標(biāo)不變,故設(shè)出C′(m,2),則B′(m+3,1),再設(shè)出反比例函數(shù)解析式,將C′與B′的坐標(biāo)代入得到關(guān)于k與m的兩方程,消去k得到關(guān)于m的方程,求出方程的解得到m的值,即可確定出k的值,得到反比例函數(shù)解析式,設(shè)直線B′C′的解析式為y=ax+b,將C′與B′的坐標(biāo)代入,得到關(guān)于a與b的二元一次方程組,求出方程組的解得到a與b的值,即可確定出直線B′C′的解析式;
(3)存在x軸上的點(diǎn)M和反比例函數(shù)圖象上的點(diǎn)P,使得四邊形PGMC′是平行四邊形,理由為:設(shè)Q為GC′的中點(diǎn),令第二問(wèn)求出的直線B′C′的解析式中x=0求出y的值,確定出G的坐標(biāo),再由C′的坐標(biāo),利用線段中點(diǎn)坐標(biāo)公式求出Q的坐標(biāo),過(guò)點(diǎn)Q作直線l與x軸交于M′點(diǎn),與y=
的圖象交于P′點(diǎn),若四邊形P′G M′C′是平行四邊形,則有P′Q=Q M′,易知點(diǎn)M′的橫坐標(biāo)大于
,點(diǎn)P′的橫坐標(biāo)小于
,作P′H⊥x軸于點(diǎn)H,QK⊥y軸于點(diǎn)K,P′H與QK交于點(diǎn)E,作QF⊥x軸于點(diǎn)F,由兩直線平行得到一對(duì)同位角相等,再由一對(duì)直角相等及P′Q=QM′,利用AAS可得出△P′EQ與△QFM′全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等,設(shè)EQ=FM′=t,由Q的橫坐標(biāo)-t表示出P′的橫坐標(biāo),代入反比例函數(shù)解析式確定出P′的縱坐標(biāo),進(jìn)而確定出M′的坐標(biāo),根據(jù)P′H-EH=P′H-QF表示出P′E的長(zhǎng),又P′Q=QM′,分別放在直角三角形中,利用勾股定理列出關(guān)于t的方程,求出方程的解得到t的值,進(jìn)而確定出P′與M′的坐標(biāo),此時(shí)點(diǎn)P′為所求的點(diǎn)P,點(diǎn)M′為所求的點(diǎn)M.
解答:解:(1)作CN⊥x軸于點(diǎn)N,
∵A(-2,0)、B(0,1)、C(d,2),
∴OA=2,OB=1,CN=2,
∵∠CAB=90°,即∠CAN+∠BAO=90°,
又∵∠CAN+∠ACN=90°,
∴∠BAO=∠ACN,
在Rt△CNA和Rt△AOB中,
∵
| ∠ACN=∠BAO | ∠ANC=∠BOA=90° | CA=AB |
| |
,
∴Rt△CNA≌Rt△AOB(AAS),
∴NC=OA=2,AN=BO=1,
∴NO=NA+AO=3,又點(diǎn)C在第二象限,
∴d=-3;
(2)設(shè)反比例函數(shù)為y=
(k≠0),點(diǎn)C′和B′在該比例函數(shù)圖象上,
設(shè)C′(m,2),則B′(m+3,1),
把點(diǎn)C′和B′的坐標(biāo)分別代入y=
,得k=2m;k=m+3,
∴2m=m+3,
解得:m=3,
則k=6,反比例函數(shù)解析式為y=
,點(diǎn)C′(3,2),B′(6,1),
設(shè)直線C′B′的解析式為y=ax+b(a≠0),
把C′、B′兩點(diǎn)坐標(biāo)代入得:
,
∴解得:
;
∴直線C′B′的解析式為y=-
x+3;
(3)存在x軸上的點(diǎn)M和反比例函數(shù)圖象上的點(diǎn)P,使得四邊形PGMC′是平行四邊形,理由為:
設(shè)Q是G C′的中點(diǎn),令y=-
x+3中x=0,得到y(tǒng)=3,
∴G(0,3),又C′(3,2),
∴Q(
,
),
過(guò)點(diǎn)Q作直線l與x軸交于M′點(diǎn),與y=
的圖象交于P′點(diǎn),
若四邊形P′G M′C′是平行四邊形,則有P′Q=Q M′,
易知點(diǎn)M′的橫坐標(biāo)大于
,點(diǎn)P′的橫坐標(biāo)小于
,
作P′H⊥x軸于點(diǎn)H,QK⊥y軸于點(diǎn)K,P′H與QK交于點(diǎn)E,作QF⊥x軸于點(diǎn)F,
∵QF∥P′E,
∴∠M′QF=∠QP′E,
在△P′EQ和△QFM′中,
∵
| ∠P′EQ=∠QFM′ | ∠QP′E=∠M′QF | P′Q=QM′ |
| |
,
∴△P′EQ≌△QFM′(AAS),
∴EQ=FM′,P′Q=QM′,
設(shè)EQ=FM′=t,
∴點(diǎn)P′的橫坐標(biāo)x=
-t,點(diǎn)P′的縱坐標(biāo)y=2•y
Q=5,點(diǎn)M′的坐標(biāo)是(
+t,0),
∴P′在反比例函數(shù)圖象上,即5(
-t)=6,
解得:t=
,
∴P′(
,5),M′(
,0),
則點(diǎn)P′為所求的點(diǎn)P,點(diǎn)M′為所求的點(diǎn)M.