7.下列從左到右的變形,錯誤的是( 。
A.$\frac{a}$=$\frac{ac}{bc}$(c≠0)B.$\frac{-a-b}{a+b}$=-1
C.$\frac{{x}^{2}-9}{{x}^{2}+6x+9}$=$\frac{x-3}{x+3}$D.$\frac{0.2a+b}{a+0.5b}$=$\frac{2a+b}{a+5b}$

分析 各項(xiàng)中分式變形得到結(jié)果,即可作出判斷.

解答 解:A、$\frac{a}$=$\frac{ac}{bc}$(c≠0),正確;
B、$\frac{-a-b}{a+b}$=$\frac{-(a+b)}{a+b}$=-1,正確;
C、$\frac{{x}^{2}-9}{{x}^{2}+6x+9}$=$\frac{(x+3)(x-3)}{(x+3)^{2}}$=$\frac{x-3}{x+3}$,正確;
D、$\frac{0.2a+b}{a+0.5b}$=$\frac{2a+10b}{10a+5b}$,錯誤,
故選D

點(diǎn)評 此題考查了分式的基本性質(zhì),熟練掌握分式的基本性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.下列各式,計算結(jié)果為0的是( 。
A.-32-3×3B.(-2)2+22C.-32+(-3)2D.-22-22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.將一副三角板按如圖所示的位置擺放,其中∠α和∠β一定互余的是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,反比例函數(shù)y1=$\frac{k}{x}$與一次函數(shù)y2=ax+b交于點(diǎn)(4,2)、(-2,-4)兩點(diǎn),則使得y1<y2的x的取值范圍是( 。
A.-2<x<4B.x<-2或x>4C.-2<x<0或0<x<4D.-2<x<0或x>4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.已知$\frac{a+b}$=3,則$\frac{a}$=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.?dāng)?shù)軸上表示數(shù)($\frac{a}{2}$+2)的點(diǎn)M與表示數(shù)($\frac{a}{3}$+3)的點(diǎn)N關(guān)于原點(diǎn)對稱,則a的值為-6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.指出下列各項(xiàng)中哪些是代數(shù)式,并說明原因.
①x3-3;②$\sqrt{\frac{3}}$;③m-4=8;④2a-b>5;⑤$\sqrt{78}$;⑥73.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.?dāng)?shù)學(xué)問題:如圖1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分線分別交于點(diǎn)O1、O2、…、On-1,求∠BOn-1C的度數(shù)?

問題探究:我們從較為簡單的情形入手.
探究一:如圖2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分線分別交于點(diǎn)O1,求∠BO1C的度數(shù)?
解:由題意可得∠O1BC=$\frac{1}{2}$∠ABC,∠O1CB=$\frac{1}{2}$∠ACB
∴∠O1BC+∠O1CB=$\frac{1}{2}$(∠ABC+∠ACB)=$\frac{1}{2}$(180°-α)
∴∠BO1C=180°-$\frac{1}{2}$(180°-α)=90°+$\frac{1}{2}$α.
探究二:如圖3,∠A=α,∠ABC、∠ACB三等分線分別交于點(diǎn)O1、O2,求∠BO2C的度數(shù).
解:由題意可得∠O2BC=$\frac{2}{3}$∠ABC,∠O2CB=$\frac{2}{3}$∠ACB
∴∠O2BC+∠O2CB=$\frac{2}{3}$(∠ABC+∠ACB)=$\frac{2}{3}$(180°-α)
∴∠BO2C=180°-$\frac{2}{3}$(180°-α)=60°+$\frac{2}{3}$α.
探究三:如圖4,∠A=α,∠ABC、∠ACB四等分線分別交于點(diǎn)O1、O2、O3,求∠BO3C的度數(shù).
(仿照上述方法,寫出探究過程)
問題解決:如圖1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分線分別交于點(diǎn)O1、O2、…、On-1,求∠BOn-1C的度數(shù).
問題拓廣:
如圖2,在△ABC中,∠A=α,∠ABC、∠ACB的角平分線交于點(diǎn)O1,兩條角平分線構(gòu)成一角∠BO1C.
得到∠BO1C=90°+$\frac{1}{2}$α.
探究四:如圖3,∠A=α,∠ABC、∠ACB三等分線分別交于點(diǎn)O1、O2,四條等分線構(gòu)成兩個角∠BO1C,∠BO2C,則∠BO2C+∠BO1C=180°+α.
探究五:如圖4,∠A=α,∠ABC、∠ACB四等分線分別交于點(diǎn)O1、O2、O3,六等分線構(gòu)成兩個角∠BO3C,∠BO2C,∠BO1C,則∠BO3C+∠BO2C+∠BO1C=270°+$\frac{3}{2}$α.
探究六:如圖1,在△ABC中,∠A=α,∠ABC、∠ACB的n等分線分別交于點(diǎn)O1、O2、…、On-1,(2n-2))等分線構(gòu)成(n-1)個角∠BOn-1C…∠BO3C,∠BO2C,∠BO1C,則∠BOn-1C+…∠BO3C+∠BO2C+∠BO1C=(n-1)(90°+$\frac{1}{2}$α).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.用適當(dāng)?shù)姆椒ń庀铝蟹匠?br />(Ⅰ)x2-1=4(x+1)
(Ⅱ)3x2-6x+2=0.

查看答案和解析>>

同步練習(xí)冊答案