如圖,在平面直角坐標(biāo)系中,直線y=-
3
3
x+
3
交x軸于A點(diǎn),交y軸于B點(diǎn),點(diǎn)C是線段AB的中點(diǎn),連接OC,然后將直線OC繞點(diǎn)C逆時針旋轉(zhuǎn)30°交x軸于點(diǎn)D,再過D點(diǎn)作直線DC1∥OC,交AB與點(diǎn)C1,然后過C1點(diǎn)繼續(xù)作直線D1C1∥OC,交x軸于點(diǎn)D1,并不斷重復(fù)以上步驟,記△OCD的面積為S1,△DC1D1的面積為S2,依此類推,后面的三角形面積分別是S3,S4…,那么S1=
 
,若S=S1+S2+S3+…+Sn,當(dāng)n無限大時,S的值無限接近于
 

精英家教網(wǎng)
分析:根據(jù)直線AB的解析式y=-
3
3
x+
3
,易得OB=
3
,OA=3,即∠OBA=60°,而C是Rt△OAB的中點(diǎn),那么易得△OCB是等邊三角形,則∠COD=30°,OC=
3
;
(1)首先求△OCD的面積,已知∠DCO=∠DOC=30°,那么△OCD是等腰三角形,過D作OC的垂線設(shè)垂足為E,易得OE的長,通過解直角三角形可求得DE的值,從而根據(jù)三角形的面積公式得到△OCD的面積;
(2)求S的值,需要從整體出發(fā);過O作OC0∥DC,那么OC0⊥AB,易可求出△OC0B、△OCC0的值,通過觀察,△OC0C、△DCC1、△D1C1D2…都是相似三角形,△ODC、△OD1C1、△D1C2D2…也都是相似三角形,因此上述兩種相似三角形的面積和將△OC0A的面積分為兩部分,且它們的比為△OC0C與△ODC的面積比,可據(jù)此求出S的值.
解答:精英家教網(wǎng)解:過O作OC0⊥AB于C0,過D作DE⊥OC于E;
由直線AC的解析式y=-
3
3
x+
3
可知:
當(dāng)y=0時,x=3,則OA=3;
當(dāng)x=0時,y=
3
,則OB=
3

故∠OBA=60°,∠OAB=30°;
由于C是Rt△AOB斜邊AB的中點(diǎn),
所以O(shè)C=CB,則△OBC是等邊三角形;
∴∠BOC=60°,∠DOC=∠DCO=30°;
∴OE=CE=
3
2
;

(1)△ODE中,OE=
3
2
,∠DOE=30°,
則DE=
1
2
,S△OCD=
1
2
OC•DE=
3
4


(2)易知:S△AOB=
1
2
OA•OB=
3
3
2
,S△BOC=
1
2
S△AOB=
3
3
4
,S△OBC0=S△OCC0=
1
2
S△OBC=
3
3
8
;
∴S△OC0A=S△OAB-S△OBC0=
3
3
2
-
3
3
8
=
9
3
8
;
由題意易得:△OC0C、△DCC1、△D1C1D2…都相似,△ODC、△OD1C1、△D1C2D2…也都相似;
設(shè)△OC0C、△DCC1、△D1C1D2…的面積和為S′,則:
S′:S=S△OC0C:S△OCD=
3
3
8
3
4
=3:2,
∴S=
2
5
S△OC0A=
2
5
×
9
3
8
=
9
3
20
;
故答案為:
3
4
,
9
3
20
點(diǎn)評:此題主要考查了圖形面積的求法,涉及到一次函數(shù)圖象與坐標(biāo)軸交點(diǎn)坐標(biāo)的求法、直角三角形的性質(zhì)、等邊三角形及等腰三角形的性質(zhì)等知識,注意此題中整體思想的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案