【題目】如圖,在矩形中,,點(diǎn)D是邊的中點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)D,交邊于點(diǎn)E,直線的解析式為.
(1)求反比例函數(shù)的解析式和直線的解析式;
(2)在y軸上找一點(diǎn)P,使的周長(zhǎng)最小,求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,的周長(zhǎng)最小值是______.
【答案】(1),;(2)點(diǎn)P坐標(biāo)為;(3).
【解析】
(1)首先求出D點(diǎn)坐標(biāo),然后將D點(diǎn)坐標(biāo)代入反比例解析式,求出k即可得到反比例函數(shù)的解析式.將x=2代入反比例函數(shù)解析式求出對(duì)應(yīng)y的值,即得到E點(diǎn)的坐標(biāo),然后將點(diǎn)D,E兩點(diǎn)的坐標(biāo)代入一次函數(shù)的解析式中,即可求出DE的解析式.
(2)作點(diǎn)D關(guān)于y軸的對(duì)稱(chēng)點(diǎn),連接,交y軸于點(diǎn)P,連接.此時(shí)的周長(zhǎng)最小.然后求出直線的解析式,求直線與y軸的交點(diǎn)坐標(biāo),即可得出P點(diǎn)的坐標(biāo);
(3)的周長(zhǎng)的最小值為DE+,分別利用勾股定理兩條線段的長(zhǎng),即可求.
解:(1)∵D為的中點(diǎn),,
∴.
∵四邊形是矩形,,
∴D點(diǎn)坐標(biāo)為.
∵在的圖象上,
∴.∴反比例函數(shù)解析式為.
當(dāng)時(shí),.
∴E點(diǎn)坐標(biāo)為.
∵直線過(guò)點(diǎn)和點(diǎn)
∴
解得
∴直線的解析式為.
∴反比例函數(shù)解析式為,
直線的解析式為.
(2)作點(diǎn)D關(guān)于y軸的對(duì)稱(chēng)點(diǎn),連接,交y軸于點(diǎn)P,連接.
此時(shí)的周長(zhǎng)最。唿c(diǎn)D的坐標(biāo)為,
∴點(diǎn)的坐標(biāo)為.
設(shè)直線的解析式為.
∵直線經(jīng)過(guò)
∴
解得
∴直線的解析式為.
令,得.
∴點(diǎn)P坐標(biāo)為.
(3)由(1)(2)知D(1,4),E(2,2),(-1,4).又B(2,4),
∴BD=1,BE=2,B=3.
在Rt△BDE中,由勾股定理,得DE==.
在Rt△BE中,由勾股定理,得E==.
的周長(zhǎng)的最小值為+DE =.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“互聯(lián)網(wǎng)+”時(shí)代,網(wǎng)上購(gòu)物備受消費(fèi)者青睞.某網(wǎng)店專(zhuān)售一種商品,其成本為每件元,已知銷(xiāo)售過(guò)程中,銷(xiāo)售單價(jià)不低于成本單價(jià),且物價(jià)部門(mén)規(guī)定這種商品的獲利不得高于.據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),月銷(xiāo)售量(件)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系如表:
銷(xiāo)售單價(jià)(元) | 65 | 70 | 75 | 80 | ··· |
月銷(xiāo)售量(件) | 475 | 450 | 425 | 400 | ··· |
請(qǐng)根據(jù)表格中所給數(shù)據(jù),求出關(guān)于的函數(shù)關(guān)系式;
設(shè)該網(wǎng)店每月獲得的利潤(rùn)為元,當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),每月獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤(rùn)中捐出元資助貧困學(xué)生.為了保證捐款后每月利潤(rùn)不低于元,且讓消費(fèi)者得到最大的實(shí)惠,該如何確定該商品的銷(xiāo)售單價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(6,4).雙曲線經(jīng)過(guò)AB的中點(diǎn)D,且與BC交于點(diǎn)E,連接DE.
(1)求k的值和直線DE的解析式;
(2)若點(diǎn)P是y軸上一點(diǎn),且△OPE的面積與四邊形ODBE的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),繪出某一結(jié)果出現(xiàn)的頻率折線圖.如圖所示,則符合這一結(jié)果的實(shí)驗(yàn)可能是( )
A.拋一枚硬幣,出現(xiàn)正面朝上
B.從一個(gè)裝有2個(gè)紅球1個(gè)黑球的袋子中任取一球,取到的是黑球
C.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃
D.擲一個(gè)正六面體的骰子,出現(xiàn)3點(diǎn)朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,草原上有A,B,C三個(gè)互通公路的奶牛養(yǎng)殖基地,B與C之間距離為100千米,C在B的正北方,A在C的南偏東60°方向且在B的北偏東30°方向.A地每年產(chǎn)奶3萬(wàn)噸;B地有奶牛9000頭,平均每頭牛的年產(chǎn)奶量為3噸;C地養(yǎng)了三種奶牛,其中黑白花牛的頭數(shù)占20%,三河牛的頭數(shù)占35%,其他情況反映在圖(2),圖(3)中.
(1)通過(guò)計(jì)算補(bǔ)全圖(3);
(2)比較B地與C地中,哪一地平均每頭牛的年產(chǎn)奶量更高?
(3)如果從B,C兩地中選擇一處建設(shè)一座工廠解決三個(gè)基地的牛奶加工問(wèn)題,當(dāng)運(yùn)送一噸牛奶每千米的費(fèi)用都為1元,那么從節(jié)省運(yùn)費(fèi)的角度考慮,應(yīng)在何處建設(shè)工廠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為D.
(1)求證:;
(2)若,,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次全校名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽,并設(shè)成績(jī)優(yōu)勝獎(jiǎng).賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)不低于分,為了更好的了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了名學(xué)生的成績(jī)(成績(jī)取整數(shù),總分分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)?cè)谶@組的數(shù)據(jù)是:
“漢字聽(tīng)寫(xiě)”大賽成績(jī)段頻數(shù)頻率統(tǒng)計(jì)表
成績(jī)/分 | 頻數(shù) | 頻率 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)表中 , ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績(jī)的中位數(shù)是 ;
(4)若這次比賽成績(jī)?cè)?/span>分以上(含分)的學(xué)生獲得優(yōu)勝獎(jiǎng),估計(jì)該校參加這次比賽的名學(xué)生中獲得優(yōu)勝獎(jiǎng)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,,分別為,邊的中點(diǎn).動(dòng)點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)運(yùn)動(dòng),連接,過(guò)點(diǎn)作于點(diǎn),連接.若點(diǎn)的速度是點(diǎn)的速度的2倍,在點(diǎn)從點(diǎn)運(yùn)動(dòng)至點(diǎn)的過(guò)程中,線段長(zhǎng)度的最大值為_________,線段長(zhǎng)度的最小值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)若這種冰箱的售價(jià)降低50元,每天的利潤(rùn)是 元;
(2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到更多的實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí)利潤(rùn)最高,并求出最高利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com