如圖,Rt△ABC中,∠C=90°,O是AB邊上一點,⊙O與AC、BC都相切,若BC=3,AC=4,則⊙O的半徑為( 。
A.1B.2C.
5
2
D.
12
7

設(shè)AC與⊙O的切點為F,⊙O半徑為r,
如圖,連接OF,
結(jié)合題意有,OF⊥AC,即OFBC,
故有△AOF△ABC,
即AF:AC=r:BC,
又AF=AC-r,BC=3,AC=4,
代入可得
r=
12
7

故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形ABCD的對角線AC和BD相交于O點,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,求證:E,F(xiàn),G,H四個點在以O(shè)為圓心的同一個圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,O是斜邊AB上的一點,圓O過點A并與邊BC相切于點D,與邊AC相交于點E.
(1)求證:AD平分∠BAC;
(2)若圓O的半徑為4,∠B=30°,求AC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,從⊙O外一點A作⊙O的切線AB,AC,切點分別為B,C,⊙O的直徑BD為6,連結(jié)CD,AO.
(1)求證:CDAO;
(2)求CD•AO的值;
(3)若AO=2CD,求劣弧BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.
(1)求證:直線AB是⊙O的切線;
(2)試猜想BC,BD,BE三者之間的等量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AC是圓O的直徑,PA切圓O于點A,弦BCOP,OP交圓O于點D,連接PB
(1)求證:PB是圓O的切線;
(2)若PA=3,PD=2,求圓O的半徑R的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,小明同學(xué)測量一個光盤的直徑,他只有一把直尺和一塊三角板,他將直尺、光盤和三角板如圖放置于桌面上,并量出AB=3cm,則此光盤的直徑是( 。
A.3cmB.2
2
cm
C.3
3
cm
D.6
3
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的弦,若OA⊥OD且CD=BD.求證:BD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,弦CD⊥AB于點M,過點B作BECD,交AC的延長線于點E,連接BC.
(1)求證:BE為⊙O的切線.
(2)若CD=6,tan∠BCD=
1
2
,求⊙O的直徑.

查看答案和解析>>

同步練習(xí)冊答案