精英家教網 > 初中數學 > 題目詳情

如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點D是AC的中點,將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合.連接BE、EC.試猜想線段BE和EC的數量關系和位置關系,并證明你的猜想.

 

【答案】

線段BE和EC的數量關系是:BE=EC,……1分

位置關系是:BE⊥EC.  …………………………2分

證明如下:

∵∠BAC=90°,∠EAD=∠EDA=45°,

∴∠BAE=90°+45°=135°,∠CDE=180°-45°=135°,

∴∠BAE=∠CDE,          ……………………………………………………4分

又∵AC=2AB,點D是AC的中點,∴AD=DC,………………………………6分

而AE=DE,∴△ABE≌△DCE, …………………………………………………5分

∴BE=EC,∠AEB=∠DEC,  ……………………………………………………7分

∴∠BEC=∠BED+∠DEC=∠BED+∠AEB=∠AED=90°,…………………8分

∴BE⊥EC.     ………………………………………………………………………9分

 【解析】先用邊角邊證明△ABE與△EDC全等證出BE=CE,然后用角的等量代換證明∠DEC=90°,從而得出BE⊥EC

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數解析式,并寫出函數的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數關系式.

查看答案和解析>>

同步練習冊答案