閱讀下列材料,然后解答后面的問題.
我們知道方程2x+3y=12有無數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.
例:由2x+3y=12,得,(x、y為正整數(shù))
∴,解得0<x<6.
又為正整數(shù),則為正整數(shù).
由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入.
∴2x+3y=12的正整數(shù)解為
問題:
(1)請(qǐng)你寫出方程2x+y=5的一組正整數(shù)解: ;
(2)若為自然數(shù),則滿足條件的x值有 個(gè);
A.2 B.3 C.4 D.5
(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購買方案?
(1)或;(2)C;(3)兩種
【解析】
試題分析:根據(jù)題意可知,求方程的正整數(shù)解,先把方程做適當(dāng)?shù)淖冃危倭信e正整數(shù)代入求解.
(1) 由2x+y=5,得y=5-2x(x、y為正整數(shù))
所以,解得
∴當(dāng)x=1時(shí),y=3;
當(dāng)x=2時(shí),y=1.
即方程的正整數(shù)解是或;
(2)同樣為自然數(shù),則有:0<x-2≤6,即2<x≤8
當(dāng)x=3時(shí),
當(dāng)x=4時(shí),
當(dāng)x=5時(shí),
當(dāng)x=8時(shí),
即滿足條件x的值有4個(gè),
故選C;
(3)設(shè)購買單價(jià)為3元的筆記本m本,單價(jià)為5元的鋼筆n支.
則根據(jù)題意得:3m+5n=35,其中m、n均為自然數(shù),則
所以
由于為正整數(shù),則為正整數(shù),可知m為5的倍數(shù).
∴當(dāng)m=5時(shí),n=4;
當(dāng)m=10時(shí),n=1.
答:有兩種購買方案:即購買單價(jià)為3元的筆記本5本,單價(jià)為5元的鋼筆4支;
或購買單價(jià)為3元的筆記本10本,單價(jià)為5元的鋼筆1支.
考點(diǎn):二元一次方程組的應(yīng)用
點(diǎn)評(píng):解題關(guān)鍵是要讀懂題目給出的已知條件,根據(jù)條件求解.注意筆記本和鋼筆是整體,所有不可能出現(xiàn)小數(shù)和負(fù)數(shù),這也就說要求的是正整數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
12-2x |
3 |
2 |
3 |
|
2 |
3 |
2 |
3 |
2 |
3 |
|
6 |
x-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
1 |
a |
1 |
2 |
3 |
2 |
3 |
2 |
2 |
3 |
1 |
a |
1 |
a |
1 |
2 |
1 |
2 |
2 |
3 |
2 |
3 |
3 |
2 |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
|
|
12-2x |
3 |
2 |
3 |
|
2 |
3 |
2 |
3 |
2 |
3 |
|
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
|
|
12-2x |
3 |
2 |
3 |
|
2 |
3 |
2 |
3 |
2 |
3 |
|
6 |
x-2 |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com