【題目】如圖,在△ABC中,AB=AC,DE垂直平分AB.
(1)若AB=AC=10cm,BC=6cm,求△BCE的周長;
(2)若∠A=40°,求∠EBC的度數(shù).
【答案】(1)16cm;(2)30°.
【解析】
(1)已知DE垂直平分AB,根據(jù)線段垂直平分線的性質可得EA=EB,再由△BCE的周長=BC+CE+BE=BC+CE+AE=BC+AC即可求得△BCE的周長;(2)已知AB=AC,∠A=40°,根據(jù)等腰三角形的性質及三角形的內角和定理可得∠ABC=∠C=70°,再由EA=EB,∠A=40°,根據(jù)等腰三角形的性質可得∠A=∠ABE=40°;由∠EBC=∠ABC-∠ABE即可求得∠EBC的度數(shù).
(1)∵DE垂直平分AB,
∴EA=EB,
∵AB=AC=10cm,BC=6cm,
∴△BCE的周長=BC+CE+BE=BC+CE+AE=BC+AC=10cm+6cm=16cm.
(2)∵AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
∵EA=EB,∠A=40°,
∴∠A=∠ABE=40°,
∴∠EBC=∠ABC-∠ABE=70°-40°=30°.
科目:初中數(shù)學 來源: 題型:
【題目】某汽車專賣店銷售甲,乙兩種型號的新能源汽車,上周售出甲型汽車和乙型汽車各2輛,銷售額為88萬元;本周售出3輛甲型汽車和1輛乙型汽車,兩周的銷售額為184萬元.
(1)求每輛甲型汽車和乙型汽車的售價;
(2)某公司擬向該店購買甲,乙兩種型號的新能源汽車共6輛,購車費不少于130萬元,且不超過140萬元.則有哪幾種購車方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題再現(xiàn):
數(shù)形結合是一種重要的數(shù)學思想方法,借助這種思想方法可將抽象的數(shù)學知識變得直觀并且具有可操作性.初中數(shù)學里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進行直觀推導和解釋.
例如:利用圖形的幾何意義驗證完全平方公式.
將一個邊長為的正方形的邊長增加,形成兩個長方形和兩個正方形,如圖所示:這個圖形的面積可以表示成:
或
∴
這就驗證了兩數(shù)和的完全平方公式.
類比解決:
請你類比上述方法,利用圖形的幾何意義驗證平方差公式.
(要求畫出圖形并寫出推理過程)
問題提出:如何利用圖形幾何意義的方法證明?
如圖所示,表示1個1×1的正方形,即:,表示1個2×2的正方形,與恰好可以拼成1個2×2的正方形,因此:、、就可以表示2個2×2的正方形,即:而、、、恰好可以拼成一個的大正方形.
由此可得:.
嘗試解決:
請你類比上述推導過程,利用圖形的幾何意義確定:_______.(要求寫出結論并構造圖形寫出推證過程).
問題拓廣:
請用上面的表示幾何圖形面積的方法探究:_______.(直接寫出結論即可,不必寫出解題過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平價商場經(jīng)銷的甲、乙兩種商品,甲種商品每件售價98元,利潤率為40%;乙種商品每件進價80元,售價128元.
(1)甲種商品每件進價為 元,每件乙種商品利潤率為 .
(2)若該商場同時購進甲、乙兩種商品共50件,恰好總進價為3800元,求購進甲、乙兩種商品各多少件?
(3)在“元且“期間,該商場只對乙種商品進行如下的優(yōu)惠促銷活動:按下表優(yōu)惠條件,
打折前一次性購物總金額 | 優(yōu)惠措施 |
少于等于480元 | 不優(yōu)惠 |
超過480元,但不超過680元 | 其中480元不打折,超過480元的部分給予6折優(yōu)惠 |
超過680元 | 按購物總額給予7.5折優(yōu)惠 |
若小華一次性購買乙種商品實際付款576元,求小華在該商場購買乙種商品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
(1)若∠BAC=50°,求∠EDA的度數(shù);
(2)求證:直線AD是線段CE的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛貨車從百貨大樓出發(fā)送貨,向東走了4千米到達小明家,繼續(xù)向東走了1.5千米到達小紅家,然后向西走了8.5千米到達小剛家,最后返回百貨大樓.
(1)以百貨大樓為原點,向東為正方向,1個單位長度表示1千米,請在數(shù)軸上標出小明、小紅、小剛家的位置.(小明家用點表示,小紅家用點表示,小剛家用點表示)
(2)求這輛貨車此次送貨(從出發(fā)到返回百貨大樓)總共走的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC邊上的中點,兩邊PE,PF分別交AB,AC于點E,F,給出以下四個結論:
①AE=CF;②EF=AP;③2S四邊形AEPF=S△ABC;④當∠EPF在△ABC內繞頂點P旋轉時(點E不與A,B重合)有BE+CF=EF;上述結論中始終正確的序號有__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com