【題目】已知:如圖,在△ABC中,AB=AC,∠A=36°,∠ABC的平分線交AC于D,
(1)求證:△ABC∽△BCD;
(2)若BC=2,求AB的長(zhǎng).
【答案】(1)證明見解析;(2).
【解析】
試題(1)根據(jù)角平分線的性質(zhì)得到∠DBC=∠A,已知有一組公共角,則根據(jù)有兩組角對(duì)應(yīng)相等則兩三角形相似可得到△ABC∽△BCD;
(2)相似三角形的對(duì)應(yīng)邊對(duì)應(yīng)成比例,且由已知可得到BD=BC=AD,從而便可求得AB的長(zhǎng).
試題解析:(1)∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°.
∵BD平分∠ABC,
∴∠ABD=∠DBC=36°.
∴∠DBC=∠A=36°.
又∵∠ABC=∠C,
∴△ABC∽△BCD.
(2)∵∠ABD=∠A=36°,
∴AD=BD,∠BDC=∠C=72°.
∴BD=BC=AD.
∵△ABC∽△BCD,
∴.
即.
解得:AB=或(不符合題意).
∴AB=.
考點(diǎn): 1.等腰三角形的性質(zhì);2.角平分線的性質(zhì);3.相似三角形的判定與性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形ABCD是菱形,邊BC在x軸上,點(diǎn)A(0,4),點(diǎn)B(3,0),雙曲線y=與直線BD交于點(diǎn)D、點(diǎn)E.
(1)求k的值;
(2)求直線BD的解析式;
(3)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰梯形ABCD中,AB∥DC,AD=BC=CD,點(diǎn)E為AB上一點(diǎn),連結(jié)CE,請(qǐng)?zhí)砑右粋(gè)你認(rèn)為合適的條件 ,使四邊形AECD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,是鈍角,讓點(diǎn)C在射線BD上向右移動(dòng),則( )
A.將先變成直角三角形,然后再變成銳角三角形,而不會(huì)再是鈍角三角形
B.將變成銳角三角形,而不會(huì)再是鈍角三角形
C.將先變成直角三角形,然后再變成銳角三角形,接著又由銳角三角形變?yōu)殁g角三角形
D.先由鈍角三角形變?yōu)橹苯侨切危僮優(yōu)殇J角三角形,接著又變?yōu)橹苯侨切,角形然后再次變(yōu)殁g角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=mx(m為常數(shù),且m≠0)與雙曲線y= (k為常數(shù),且k≠0)相交于A(﹣2,6),B兩點(diǎn),過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,連接AC,則△ABC的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在東西方向的海岸線l上有一長(zhǎng)為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時(shí)刻測(cè)得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距千米的A處;經(jīng)過(guò)40分鐘,又測(cè)得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=6,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)30°后得到△A1BC1,則陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形紙片 ABCD 中,∠B=∠D=90°,點(diǎn) E,F 分別在邊 BC,CD 上,將 AB,AD 分別沿 AE,AF 折疊,點(diǎn) B,D 恰好都和點(diǎn) G 重合,∠EAF=45°.
(1)求證:四邊形 ABCD 是正方形;
(2)若 EC=FC=1,求 AB 的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長(zhǎng)交⊙O于D點(diǎn),連接BD并延長(zhǎng)至F,使得BD=DF,連接CF、BE.
(1)求證:DB=DE;
(2)求證:直線CF為⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com