【題目】如圖,平行四邊形ABCD中,E,F是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件不能是( )
A. B. C. D.
【答案】B
【解析】
利用平行四邊形的性質以及全等三角形的判定分別分得出即可.
A、當BE=FD,
∵平行四邊形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);故該選項不符合題意,
B、當AE=CF無法得出△ABE≌△CDF,故此選項符合題意
C、當BF=ED,
∴BE=DF,
∵平行四邊形ABCD中,
∴AB=CD,∠ABE=∠CDF,
∵BF=ED,
∴BF-EF=ED-EF,即BE=DF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);故該選項不符合題意,
D、當∠1=∠2,
∵平行四邊形ABCD中,
∴AB=CD,∠ABE=∠CDF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(ASA),故該選項不符合題意,
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB=80°,如圖,OC是∠AOB的平分線,OD、OE分別平分∠BOC和∠AOC,
(1)求∠DOE的度數(shù);
(2)當OC在∠AOB內(nèi)繞O點旋轉時,OD、OE仍是∠BOC和∠AOC的平分線,問此時∠DOE的大小是否和(1)中的答案相同?通過此過程,你能總結出怎樣的結論?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】5月13日,周杰倫2017“地表最強”世界巡回演唱會在奧體中心盛大舉行,1號巡邏員從舞臺走往看臺,2號巡邏號從看臺走往舞臺,兩人同時出發(fā),分別以各自的速度在舞臺與看臺間勻速走動,出發(fā)1分鐘后,1號巡邏員發(fā)現(xiàn)對講機遺忘在出發(fā)地,便立即返回出發(fā)地,拿到對講機后(取對講機時間不計)立即再從舞臺走往看臺,結果1號巡邏員先到達看臺,2號巡邏員繼續(xù)走到舞臺,設2號巡邏員的行駛時間為x(min),兩人之間的距離為y(m),y與x的函數(shù)圖象如圖所示,則當1號巡邏員到達看臺時,2號巡邏員離舞臺的距離是________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線與x軸交于點A、B兩點(點A在點B的左側),與y軸交于點C,過點C作CD∥x軸,且交拋物線于點D,連接AD,交y軸于點E,連接AC.
(1)求S△ABD的值;
(2)如圖2,若點P是直線AD下方拋物線上一動點,過點P作PF∥y軸交直線AD于點F,作PG∥AC交直線AD于點G,當△PGF的周長最大時,在線段DE上取一點Q,當PQ+QE的值最小時,求此時PQ+ QE的值;
(3)如圖3,M是BC的中點,以CM為斜邊作直角△CMN,使CN∥x軸,MN∥y軸,將△CMN沿射線CB平移,記平移后的三角形為△C′M′N′,當點N′落在x軸上即停止運動,將此時的△C′M′N′繞點C′逆時針旋轉(旋轉度數(shù)不超過180°),旋轉過程中直線M′N′與直線CA交于點S,與y軸交于點T,與x軸交于點W,請問△CST是否能為等腰三角形?若能,請求出所有符合條件的WN′的長度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中, , , 為上一個動點,過點作交折線于點,設的長為, 的面積為, 關于函數(shù)圖象, 兩段組成,如圖所示.
()當時,求的長.
()求圖中的圖象段的函數(shù)解析式.
()求為何值時, 的面積為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,O是AB的中點,點D在AC上,點E在BC上,且∠DOE=90°.則下列結論:①OA=OB=OC;②CD=BE;③△ODE是等腰直角三角形;④四邊形CDOE的面積等于△ABC的面積的一半.其中正確的有____(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點D,AE⊥BC,垂足為E,且CF∥AD.
(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE= 度;
(2)若圖1中的∠B=x,∠ACB=y,則∠CFE= ;(用含x、y的代數(shù)式表示)
(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別為PB、PC的中點,△PEF、△PDC、△PAB的面積分別為S、S1、S2,若S=2,則S1+S2=( )
A. 4 B. 6 C. 8 D. 不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com