【題目】如圖,在菱形ABCD中,∠BAD120°CEAD,且CEBC,連接BE交對(duì)角線AC于點(diǎn)F,則∠EFC_____°

【答案】105°

【解析】

由菱形及菱形一個(gè)內(nèi)角為120°,易得△ABC與△ACD為等邊三角形.CEAD可由三線合一得CE平分∠ACD,即求得∠ACE的度數(shù).再由CEBC等腰三角形把∠E度數(shù)求出,用三角形內(nèi)角和即能去∠EFC

解:∵菱形ABCD中,∠BAD120°

ABBCCDAD,∠BCD120°,∠ACB=∠ACDBCD60°,

∴△ACD是等邊三角形

CEAD

∴∠ACEACD30°

∴∠BCE=∠ACB+ACE90°

CEBC

∴∠E=∠CBE45°

∴∠EFC180°﹣∠E﹣∠ACE180°45°30°105°

故答案為:105°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形ABC中,AB=24,AC=18,D是AC上一點(diǎn),AD=12,在AB上取一點(diǎn)E,使A、D、E三點(diǎn)組成的三角形與ABC相似,則AE=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,EF分別是邊ABBC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC=( )

A. 35° B. 45° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為( 。

A. 8 B. 8 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線 AC、BD 相交成的銳角α=30°,若 AC=8,BD=6,則ABCD的面積是( )

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中.

(1)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△A1B1C1,在圖中畫出△A1B1C1,并寫出△A1B1C1的坐標(biāo);

(2)求出△ABC的面積SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形BCE,連接AE,DE

1)求證:AEDE

2)過點(diǎn)DDFAE,垂足為F,若AB2cm,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90,EAB的中點(diǎn),求證:

(1)AC2=AB·AD;

(2)CE∥AD。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知AB=AC,D為∠BAC的角平分線上面一點(diǎn),連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點(diǎn),連接BD,CD,BECE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點(diǎn),連接BDCD,BE,CEBF,CF,依次規(guī)律,第12個(gè)圖形中有全等三角形的對(duì)數(shù)是( )

A. 80對(duì)B. 78對(duì)C. 76對(duì)D. 以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案