【題目】如圖,四邊形的對角線交于點,則下列不能判斷四邊形是平行四邊形的條件是(

A.,

B.=

C.,=

D.=,∠=

【答案】D

【解析】

平行四邊形的性質(zhì)有①兩組對邊分別相等的四邊形是平行四邊形,②兩組對邊分別平行的四邊形是平行四邊形③兩組對角分別相等的四邊形是平行四邊形④對角線互相平分的四邊形是平行四邊形,⑤有一組對邊平行且相等的四邊形是平行四邊形,根據(jù)以上內(nèi)容判斷即可.

A、∵ADBC,

∴∠ADB=CBD

BOCDOA

,

∴△BOC≌△DOAAAS),

BO=DO

∴四邊形ABCD是平行四邊形,正確,故本選項錯誤;

B、∵∠ABC=ADC,ADBC,

∴∠ADC+DCB=180°,

∴∠ABC+BCD=180°

ABDC,

∴四邊形ABCD是平行四邊形,正確,故本選項錯誤;

C、∵AB=CD,AD=BC

∴四邊形ABCD是平行四邊形,正確,故本選項錯誤;

D、由∠ABD=ADB,∠BAO=DCO,

無法得出四邊形ABCD是平行四邊形,錯誤,故本選項正確;

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F分別在邊ABBC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BPEF于點Q,對于下列結(jié)論:①EF=2BE②PF=2PE;③FQ=4EQ④△PBF是等邊三角形.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更新果樹品種,某果園計劃購進A,B兩個品種的果樹苗栽植培育.若計劃購進這兩種果樹苗共45棵,其中A種樹苗的單價為7/棵,購買B種樹苗所需費用y()與購買數(shù)量x()之間存在如圖所示的函數(shù)關系.求yx的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,其中點B的坐標為(1,0),若拋物線y=x2+k與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以AC為直徑的⊙OAB邊交于點D,過點D的切線交BC于點E.

(1)求證:DE=BC;

(2)若四邊形ODEC是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知圖甲是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均勻分成四小塊長方形,然后按圖乙的形狀拼成一個正方形.

1)你認為圖乙中陰影部分的正方形的邊長等于多少?   

2)請用兩種不同的方法求圖乙中陰影部分的面積.

方法一:   ;方法二:   

3)觀察圖乙,你能寫出下列三個代數(shù)式之間的等量關系嗎?

m+n2;(mn2; mm

4)根據(jù)(3)題中的等量關系,解決如下問題:若a+b=8,ab=5,求(ab2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7張如圖1的長為,寬為b的小長方形紙片,按如圖2、3的方式不重疊地放在 矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.

1)如圖2,點E、Q、P在同一直線上,點F、Q、G在同一直線上,右下角與左上角的陰影部分的面積的差為____________(用含、的代數(shù)式表示),矩形ABCD的面積為____________(用含的代數(shù)式表示);

2)如圖3,點F、H、Q、G在同一直線上,設右下角與左上角的陰影部分的面積的差為S,.

①用、的代數(shù)式表示AE;

②當BC的長度變化時,按照同樣的放置方式,S始終保持不變,那么、必須滿足什么條件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上有三個點、,如圖所示.

(1)將點向左平移4個單位,此時該點表示的數(shù)是________;

(2)將點向左平移3個單位得到數(shù),再向右平移2個單位得到數(shù),則,分別是多少?

(3)怎樣移動、中的兩點,使三個點表示的數(shù)相同?你有幾種方法?

查看答案和解析>>

同步練習冊答案