【題目】彈簧掛上物體后會(huì)伸長(zhǎng)測(cè)得一彈簧的長(zhǎng)度y(cm)與所掛重物的質(zhì)量x(kg)有下面的關(guān)系,那么彈簧總長(zhǎng)y(cm)與所掛重物x(kg)之間的關(guān)系式為( )

A. yx+12 B. y=0.5x+12

C. y=0.5x+10 D. yx+10.5

【答案】B

【解析】由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5為常量,12也為常量.故可求出彈簧總長(zhǎng)y(cm)與所掛重物x(㎏)之間的函數(shù)關(guān)系式.

(1)由表可知:常量為0.5,12,
所以,彈簧總長(zhǎng)y(cm)與所掛重物x(㎏)之間的函數(shù)關(guān)系式為y=0.5x+12,

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是( 。

A.兩直線平行,內(nèi)錯(cuò)角相等

B.過直線外一點(diǎn)有且只有一條直線與已知直線平行

C.同旁內(nèi)角互補(bǔ),兩直線平行

D.過一點(diǎn)有且只有一條直線垂直于已知直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.

(1)請(qǐng)判斷四邊形EBGD的形狀,并說明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,點(diǎn)H是BD上的一個(gè)動(dòng)點(diǎn),求HG+HC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)若,則

(2)如圖,CBOA,B=A=108°,E、FCB上,且滿足∠FOC=AOC,OE平分∠BOF,若平行移動(dòng)AC,當(dāng)∠OCA= 時(shí)?梢允埂OEB=OCA。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的有(

①如果|a|=|b|,那么a=b;

②兩條直線被第三條直線所截,同位角相等;

③如果三條直線兩兩相交,那么可把一個(gè)平面最多分成6個(gè)部分;

④不是對(duì)頂角的角可以相等

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(4,3),B(3,1),C(1,2).

(1)將三角形ABC三個(gè)頂點(diǎn)的橫坐標(biāo)都減去6,分別得到A1、B1、C1,依次連接A1,B1,C1,各點(diǎn),請(qǐng)寫出A1、B1、C1的坐標(biāo)并畫出△A1B1C1,并判斷所得三角形A1B1C1與三角形ABC的大小、形狀和位置有什么關(guān)系?

(2)將三角形ABC三個(gè)頂點(diǎn)的縱坐標(biāo)都減去5,分別得到A2、B2、C2,依次連接A2,B2,C2,各點(diǎn),請(qǐng)寫出A2、B2、C2的坐標(biāo)并畫出△A2B2C2,并判斷所得三角形A2B2C2與三角形ABC的大小、形狀和位置有什么關(guān)系?

(3)求△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,BAD的平分線與BC的延長(zhǎng)線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DGAE,垂足為G,若DG=1,則AE的邊長(zhǎng)為( ).

A.2 B.4 C.4 D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入到個(gè)位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時(shí),若,則<x>n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:

①<1.493>=1;

②<2x>=2<x>

,則實(shí)數(shù)x的取值范圍是

當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有

。

其中,正確的結(jié)論有  (填寫所有正確的序號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ABC和∠ACB的角平分線BECF相交于點(diǎn)I,

(1)∠BIC=120°,求∠A的度數(shù)

(2)當(dāng)∠BIC=135°,則∠A= 。

(3)請(qǐng)你用數(shù)學(xué)表達(dá)式歸納出∠BIC與∠A的關(guān)系式,并說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案