精英家教網 > 初中數學 > 題目詳情
已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內,AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
(1)求點A、E的坐標;
(2)若y=-
6
3
7
x2+bx+c過點A、E,求拋物線的解析式;
(3)連接PB、PD,設L為△PBD的周長,當L取最小值時,求點P的坐標及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.
(1)連接AD,
∵△ABC是邊長為4的等邊三角形,又B的坐標為(-1,0),BC在x軸上,A在第一象限,
∴點C在x軸的正半軸上,
∴C的坐標為(3,0),由中點坐標公式,得:D的坐標為(1,0).
顯然AD⊥BC且AD=
3
BD=2
3
,
∴A的坐標是(1,2
3
).
OE=
1
2
AD,得E(0,
3
);

(2)因為拋物線y=-
6
3
7
x2+bx+c過點A、E,
由待定系數法得:c=
3
,b=
13
3
7
,
拋物線的解析式為y=-
6
3
7
x2+
13
3
7
x+
3


(3)大家記得這樣一個常識嗎?
“牽牛從點A出發(fā),到河邊l喝水,再到點B處吃草,走哪條路徑最短”即確定l上的點P,
方法是作點A關于l的對稱點A',連接A'B與l的交點P即為所求.
本題中的AC就是“河”,B、D分別為“出發(fā)點”和“草地”.
由引例并證明后,得先作點D關于AC的對稱點D',
連接BD'交AC于點P,則PB與PD的和取最小值,
即△PBD的周長L取最小值.
∵D、D′關于直線AC對稱,
∴DD′⊥AC,即∠D′DC=30°,
DF=
3
,DD'=2
3
,
求得點D'的坐標為(4,
3
),
直線BD'的解析式為:y=
3
5
x+
3
5
,
直線AC的解析式為:y=-
3
x+3
3

求直線BD'與AC的交點可得點P的坐標(
7
3
,
2
3
3
).
此時BD'=
BG2+D′G2
=
52+(
3
)
2
=2
7
,
所以△PBD的最小周長L為2
7
+2,
把點P的坐標代入y=-
6
3
7
x2+
13
3
7
x+
3
成立,所以此時點P在拋物線上.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖1,拋物線y=ax2-3ax+b經過A(-1,0),C(3,2)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)若直線y=kx-1(k≠0)將四邊形ABCD面積二等分,求k的值;
(3)如圖2,過點E(1,-1)作EF⊥x軸于點F,將△AEF繞平面內某點旋轉180°后得△MNQ(點M,N,Q分別與點A,E,F(xiàn)對應),使點M,N在拋物線上,求點M,N的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

拋物線經過A、B、C三點,頂點為D,且與x軸的另一個交點為E.
(1)求該拋物線的解析式;
(2)求D和E的坐標,并求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,在平面直角坐標系中,AB、CD都垂直于x軸,垂足分別為B、D,AD與BC相交于E點,已知:A(-2,-6),C(1,-3),一拋物線經過A,E,C三點.
(1)求點E的坐標及此拋物線的表達式;
(2)如圖2,如果AB位置不變,將DC向右平移k(k>0)個單位,求△AEC的面積S關于k的函數表達式;
(3)在第(2)問中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數99象過點A(5,-1),B(1,1),C(-1,2),求此二次函數9解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經過(-1,10),(1,4),(2,7)三點,求這個函數的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,對稱軸為直線x=-
7
2
的拋物線經過點A(-6,0)和點B(0,4).
(1)求拋物線的解析式和頂點坐標;
(2)設點E(x,y)是拋物線上的一個動點,且位于第三象限,四邊形OEAF是以OA為對角線的平行四邊形,求?OEAF的面積S與x的函數關系式,并寫出自變量x的取值范圍;
①當?OEAF的面積為24時,請判斷?OEAF是否為菱形?
②是否存在點E,使?OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.•

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數y=-
1
2
x2+bx+c
的圖象經過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數的解析式;
(2)求該二次函數圖象的頂點坐標、對稱軸以及二次函數圖象與x軸的另一個交點;
(3)在右圖的直角坐標系內描點畫出該二次函數的圖象及對稱軸.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在平面直角坐標系xOy中(如圖),已知二次函數y=x2+bx+c的圖象經過點A(0,3)和點B(3,0),其頂點記為點C.
(1)確定此二次函數的解析式,并寫出頂點C的坐標;
(2)將直線CB向上平移3個單位長度,求平移后直線l的解析式;
(3)在(2)的條件下,能否在直線上l找一點D,使得以點C、B、D、O為頂點的四邊形是等腰梯形.若能,請求出點D的坐標;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案