【題目】甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)兩小時,甲車到達B地后立即調頭,并保持原速度與乙車同向行駛,乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,經(jīng)過一段時間后兩車同時到達C地,設兩車之間的距離為y(干米),甲車行駛的時間為x小時,yx之間的函數(shù)圖象如圖所示,則當甲車重返A地時,乙車距離C________千米.

【答案】120

【解析】

根據(jù)題意和函數(shù)圖象可以求得甲乙兩車的速度,然后根據(jù)題意和函數(shù)圖象即可求得甲重返A地時,乙車距離C地的距離,本題得以解決.

設甲車的速度為a千米/小時,乙車的速度為b千米/小時,

,得,

AB兩地的距離為:60×7=420千米,

設甲車從B地到C地用的時間為t小時,

60t=40t+40×7-2),

解得,t=10,

∴當甲重返A地時,乙車距離C地:60×10-40×7-2-40×420÷60=120千米,

故答案為:120

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著技術的發(fā)展進步,某公司2018年采用的新型原料生產(chǎn)產(chǎn)品.這種新型原料的用量y(噸)與月份x之間的關系如圖1所示,每噸新型原料所生產(chǎn)的產(chǎn)品的售價z(萬元)與月份x之間的關系如圖2所示.已知將每噸這種新型原料加工成的產(chǎn)品的成本為20萬元.

1)求出該公司這種新型原料的用量y(噸)與月份x之間的函數(shù)關系式;

2)若該公司利用新型原料所生產(chǎn)的產(chǎn)品當月都全部銷售,求哪個月利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“七巧板”是我們祖先的一項卓越創(chuàng)造,可以拼出許多有趣的圖形,被譽為“東方魔板”,圖①是由邊長的正方形薄板分成7塊制作成的“七巧板”圖②是用該“七巧板”拼成的一個“家”的圖形,該“七巧板”中7塊圖形之一的正方形邊長為_______(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠ABC為銳角,點M為射線AB上一動點,連接CM,以點C為直角頂點,以CM為直角邊在CM右側作等腰直角三角形CMN,連接NB

1)如圖1,圖2,若△ABC為等腰直角三角形,

問題初現(xiàn):①當點M為線段AB上不與點A重合的一個動點,則線段BN,AM之間的位置關系是   ,數(shù)量關系是   ;

深入探究:②當點M在線段AB的延長線上時,判斷線段BN,AM之間的位置關系和數(shù)量關系,并說明理由;

2)如圖3,∠ACB≠90°,若當點M為線段AB上不與點A重合的一個動點,MPCM交線段BN于點P,且∠CBA45°,BC,當BM   時,BP的最大值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠ACD90°,ACDCMN是過點A的直線,DBMN于點B

1)如圖,求證:BD+ABBC;

2)直線MN繞點A旋轉,在旋轉過程中,當∠BCD30°BD時,求BC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,CGAB于點G,∠ABF45°,FCD上,BFCG于點E,連接AE,且AEAD

1)若BG2,BC,求EF的長度;

2)求證:CE+BEAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小蕓設計的“過圓外一點作已知圓的切線”的尺規(guī)作圖過程.

已知:⊙O 及⊙O 外一點 P

求作:⊙O 的一條切線,使這條切線經(jīng)過點 P

作法:①連接 OP,作 OP 的垂直平分線 l,交 OP 于點 A

②以 A 為圓心,AO 為半徑作圓,交⊙O 于點 M;

③作直線 PM,則直線 PM 即為⊙O 的切線.

根據(jù)小蕓設計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明:

證明:連接 OM

由作圖可知,A OP 中點,

OP 為⊙A 直徑,

∴∠ 90°( )(填推理的依據(jù))

OMPM

又∵點 M 在⊙O 上,

PM 是⊙O 的切線.( )(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點O,點EOA的中點,連接BE并延長交AD于點F,已知SAEF=4,則下列結論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境

在綜合與實踐課上,同學們以三角形的折疊為主題開展數(shù)學活動.

操作發(fā)現(xiàn)

楊輝小組的同學用一張鈍角三角形紙片為鈍角,進行了如下操作:

第一步:如圖1,折出的角平分線;

第二步:如圖2,展平紙片,再次折疊該三角形紙片,使預點與點重合,拆痕分別與,交于點,;

第三步:如圖3,再次展平紙片,連接,可得四邊形

1)在圖4中利用尺規(guī)作出折痕,;

(要求:保留作圖痕跡,不寫作法)

實踐探究

2)試判斷圖3中四邊形的形狀,并寫出證明過程;

深入探究

3陳景潤小組的同學突發(fā)奇想,在楊輝小組同學操作的基礎上設計了這樣一個問題:在圖3中,連接,分別交于點,交于點,若,,利用相似三角形的知識可以求出的長.請你寫出求解過程.

查看答案和解析>>

同步練習冊答案