【題目】如圖,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半徑至少為 cm的圓形紙片所覆蓋.
【答案】
【解析】解:作圓O的直徑CD,連接BD,
∵弧BC對(duì)的圓周角有∠A、∠D,
∴∠D=∠A=60°,
∵直徑CD,
∴∠DBC=90°,
∴sin∠D= ,即sin60°= ,解得:CD=2 ,∴圓O的半徑是 ,所以答案是: .
【考點(diǎn)精析】利用圓周角定理和三角形的外接圓與外心對(duì)題目進(jìn)行判斷即可得到答案,需要熟知頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)的學(xué)習(xí)過(guò)程中,我們要善于觀察、發(fā)現(xiàn)規(guī)律并總結(jié)、應(yīng)用.下面給同學(xué)們展示了四種有理數(shù)的簡(jiǎn)便運(yùn)算的方法:
方法①:(﹣)2×162=[(﹣)×16]2=(﹣8)2=64,23×53=(2×5)3=103=1000
規(guī)律:a2b2=(ab)2,anbn=(ab)n (n為正整數(shù))
方法②:3.14×23+3.14×17+3.14×60=3.14×(23+17+60)=3.14×100=314
規(guī)律:ma+mb+mc=m(a+b+c)
方法③:(﹣12)÷3=[(﹣12)+(﹣)]×=(﹣12)×+(﹣)×=(﹣4)+(﹣)=﹣4
方法④:=1﹣, =﹣, =﹣, =﹣,…
規(guī)律: =﹣(n為正整數(shù))
利用以上方法,進(jìn)行簡(jiǎn)便運(yùn)算:
①(﹣0.125)2014×82014;
③(﹣20)÷(﹣5);
④+++…+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)小組的10位同學(xué)站成一列做報(bào)數(shù)游戲,規(guī)則是:從前面第一位同學(xué)開(kāi)始,每位同學(xué)依次報(bào)自己順序的倒數(shù)的2倍加1,第1位同學(xué)報(bào) ,第2位同學(xué)報(bào) ,第3位同學(xué)報(bào) ,…這樣得到10個(gè)數(shù)的積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,其中A(1,1),B(3,1),D(1,3).反比例函數(shù) 的圖象經(jīng)過(guò)對(duì)角線BD的中點(diǎn)M,與BC,CD的邊分別交于點(diǎn)P、Q.
(1)直接寫出點(diǎn)M,C的坐標(biāo);
(2)求直線BD的解析式;
(3)線段PQ與BD是否平行?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,BC=AC=5,AB=8,CD為AB邊上的高,如圖1,A在原點(diǎn)處,點(diǎn)B在y軸正半軸上,點(diǎn)C在第一象限,若A從原點(diǎn)出發(fā),沿x軸向右以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),則點(diǎn)B隨之沿y軸下滑,并帶動(dòng)△ABC在平面上滑動(dòng).如圖2,設(shè)運(yùn)動(dòng)時(shí)間表為t秒,當(dāng)B到達(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng).
(1)當(dāng)t=0時(shí),求點(diǎn)C的坐標(biāo);
(2)當(dāng)t=4時(shí),求OD的長(zhǎng)及∠BAO的大;
(3)求從t=0到t=4這一時(shí)段點(diǎn)D運(yùn)動(dòng)路線的長(zhǎng);
(4)當(dāng)以點(diǎn)C為圓心,CA為半徑的圓與坐標(biāo)軸相切時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,平分,⊥,,.
【1】求的度數(shù)
【2】如圖②,若把“⊥”變成“點(diǎn)F在DA的延長(zhǎng)線上,”,其它條件不變,求的度數(shù);
【3】如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請(qǐng)說(shuō)明理由.(此題9分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】東方紅中學(xué)位于東西方向的一條路上,一天我們學(xué)校的李老師出校門去家訪,他先向西走100米到聰聰家,再向東走150米到青青家,再向西走200米到剛剛家,請(qǐng)問(wèn):
(1)如果把這條路看作一條數(shù)軸,以向東為正方向,以校門口為原點(diǎn),請(qǐng)你在這條數(shù)軸上標(biāo)出聰聰家與青青家的大概位置(數(shù)軸上一格表示50米).
(2)聰聰家與剛剛家相距多遠(yuǎn)?
(3)聰聰家向西20米所表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣ x+b的圖象經(jīng)過(guò)點(diǎn)A(2,3),AB⊥x軸,垂足為B,連接OA.
(1)求此一次函數(shù)的解析式;
(2)設(shè)點(diǎn)P為直線y=﹣ x+b上的一點(diǎn),且在第一象限內(nèi),經(jīng)過(guò)P作x軸的垂線,垂足為Q.若S△POQ= S△AOB , 求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只不透明的袋子中有3個(gè)紅球,3個(gè)綠球和若干個(gè)白球,每個(gè)球除顏色外都相同,將球攪勻,從中任意摸出一個(gè)球.
(1)若袋子內(nèi)白球有4個(gè),任意摸出一個(gè)球是綠球的概率是多少?
(2)如果任意摸出一個(gè)球是綠球的概率是,求袋子內(nèi)有幾個(gè)白球?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com