關(guān)于x的方程x2-2(a-1)x-(b-2)2=0有兩個相等的實數(shù)根,求a2001+b3的值.
【答案】分析:根據(jù)△的意義得到△=0,即4(a-1)2+4×1×(b-2)2=0,再利用非負(fù)數(shù)的性質(zhì)有a-1=0,b-2=0,則a=1,b=2,把a與b的值代入a2001+b3計算即可.
解答:解:∵x的方程x2-2(a-1)x-(b-2)2=0有兩個相等的實數(shù)根,
∴△=0,即4(a-1)2+4×1×(b-2)2=0,
∴a-1=0,b-2=0,
∴a=1,b=2,
∴a2001+b3=12001+23=9.
點評:本題考查了一元二次方程ax2+bx+c=0的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.也考查了非負(fù)數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果關(guān)于x的方程x2+x-
1
4
k=0
沒有實數(shù)根,那么k的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用配方法解關(guān)于x的方程x2+px=q時,應(yīng)在方程兩邊同時加上(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-2x+k=0的一根是2,則k=
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

通過觀察,發(fā)現(xiàn)方程不難求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
;x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
;x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)觀察上述方程及其解,可猜想關(guān)于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a
;
(2)試驗證:當(dāng)x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的結(jié)論,解關(guān)于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
無解,求a的值?

查看答案和解析>>

同步練習(xí)冊答案