【題目】如圖反映的是地球上七大洲的面積占陸地總面積的百分比,小明根據(jù)如圖得出了
下列四個結(jié)論:
①七大洲中面積最大的是亞洲;
②南美洲、北美洲、非洲三大洲的面積和約占陸地總面積的50%;
③非洲約占陸地總面積的20%;
④南美洲的面積是大洋洲面積的2倍.
你認為上述四個結(jié)論中正確的應該是( )
A.①② B.①④ C.①②④ D.①②③④
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點, A點在原點的左側(cè),B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方的拋物線上一動點.(1)求這個二次函數(shù)的表達式.
(2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形POP’C, 那么是否存在點P,使四邊形POP’C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形 ABPC的面積最大,并求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知7+和7- 的小數(shù)部分分別為a,b,試求代數(shù)式ab-a+4b-3的值
(2)設a,b,c都是實數(shù),且滿足 , ,求式子的算術(shù)平方根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,點E是邊BC上一點,點F在射線CM上,∠AEF=90°,AE=EF,過點F作射線BC的垂線,垂足為H,連接AC.
(1)試判斷BE與FH的數(shù)量關系,并說明理由;
(2)求證:∠ACF=90°;
(3)如圖2,過A、E、F三點作圓,若EC=4,∠CEF=15°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,D為 BC的中點.
(1)如圖(1),若點M、N分別是線段AB、AC的中點。求證:DM=DN
(2)如圖(2),若點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△DMN的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將二次函數(shù)y=x2圖象向左平移1個單位,再向下平移2個單位后,所得圖象的函數(shù)是( )
A.y=(x+1)2+2
B.y=(x﹣1)2﹣2
C.y=(x+1)2﹣2
D.y=(x﹣1)2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在五張正面分別寫有數(shù)字﹣2,﹣1,0,1,2的卡片,它們的背面完全相同,現(xiàn)將這五張卡片背面朝上洗勻.
(1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對值不大于1的概率是 ;
(2)先從中任意抽取一張卡片,以其正面數(shù)字作為a的值,然后再從剩余的卡片隨機抽一張,以其正面的數(shù)字作為b的值,請用列表法或畫樹狀圖法,求點Q(a,b)在第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線CB∥OA,∠C=∠OAB=100, 回答下列問題:
(1)試說明AB∥OC
(2)若點E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.則∠EOB的度數(shù)為 °
(3)在(2)的條件下,∠OFC:∠OBF= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com