【題目】如圖,已知港口A東偏南10°方向有一處小島B,一艘貨輪從港口A沿南偏東40°航線出發(fā),行駛80海里到達C處,此時觀測小島B在北偏東60°方向.

(1)求此時貨輪到小島B的距離.

(2)在小島周圍36海里范圍內(nèi)是暗礁區(qū),此時輪船向正東方向航行有沒有觸礁危險?請作出判斷并說明理由.

【答案】(1)此時貨輪到小島B的距離為80海里;(2)輪船向正東方向航行沒有觸礁危險.

【解析】

(1)先根據(jù)題意求出∠BAC=40°、∠ACB=100°,據(jù)此得∠ABC=∠ACB=40°,從而得出AC=BC=40海里;
(2)作BD⊥CD于點D,由∠BCD=30°、BC=70知BD=BC=35,從而做出判斷.

解:(1)由題意知∠BAC=90°﹣10°﹣40°=40°,∠ACB=40°+60°=100°,

∴∠ABC=180°﹣∠BAC﹣∠ACB=40°,

∴∠ABC=∠BAC,

∴BC=AC=80海里,即此時貨輪到小島B的距離為80海里;

(2)如圖,作BD⊥CD于點D,

Rt△BCD中,∵∠BCD=30°、BC=80,

∴BD=BC=40,

∵40>36,

輪船向正東方向航行沒有觸礁危險.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動點,則PC+PQ的最小值是( )

A.
B.4
C.
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=(
A.a+b
B.a﹣2b
C.a﹣b
D.3a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九年級數(shù)學興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進6米到達D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點M,AEBC交于點N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請寫序號,少選、錯選均不得分).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.

(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).

(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在ABC中,C=90°,AC=BC,過點C在ABC外作直線MN,AMMN于M,BNMN于N。

(1)求證:MN=AM+BN;

(2)若過點C在ABC內(nèi)作直線MN,AMMN于M,BNMN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由。

查看答案和解析>>

同步練習冊答案