如圖,兩圓同心,半徑分別為6與8,又矩形ABCD的邊AB和CD分別為小大兩圓的弦.則當(dāng)矩形ABCD面積最大時(shí),求此矩形的周長(zhǎng).

解:作OM⊥AD于點(diǎn)M,ON⊥AB于點(diǎn)N,OP⊥BC于點(diǎn)P.則四邊形ANOM是矩形.
∴S△AOM=S△AON
同理,S△OBN=S△OPB
∵ON⊥AB,
∴AN=BN,則OM=OP,
∴△OAM≌△OBP
∴S△AOM=S矩形AMPB,
同理,S△OMD=S矩形MPCD,
∴S△AOD=S矩形ABCD
又∵S△AOD=OA•OD•sin∠AOD=×6×8sin∠AOD=24sin∠AOD,
當(dāng)∠AOD=90°時(shí),S△AOD的面積最大,此時(shí)矩形ABCD的面積最大.
在直角△AOD中,OA=6,OD=8,
∴AD===10,則BC=AD=10.
∵S△AOD=AD•OM=OA•OB,
∴OM===4.8cm.
∴AB=CD=2AN=2OM=9.6cm.
則矩形ABCD的周長(zhǎng)是:2(9.6+10)=39.2cm.
分析:根據(jù)垂徑定理可以證明S△AOM=S矩形AMPB,然后根據(jù)S△AOD=OA•OD•sin∠AOD,當(dāng)∠AOD=90°,矩形的面積最大,即可求得AD的長(zhǎng),AB就是AD的弦心距的2倍,根據(jù)直角三角形的面積即可求解,進(jìn)而求得矩形的周長(zhǎng).
點(diǎn)評(píng):本題主要考查了垂徑定理的應(yīng)用,利用垂徑定理可以把求弦長(zhǎng)或圓心角的問(wèn)題轉(zhuǎn)化為解直角三角形的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一園林設(shè)計(jì)師要使用長(zhǎng)度為4L的材料建造如圖1所示的花圃,該花圃是由四個(gè)形狀、大小完全一樣的扇環(huán)面組成,每個(gè)扇環(huán)面如圖2所示,它是以點(diǎn)O為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)O點(diǎn)的兩條直線段圍成,為使得綠化效果最佳,還須使得扇環(huán)面積最大.
(1)求使圖1花圃面積為最大時(shí)R-r的值及此時(shí)花圃面積,精英家教網(wǎng)其中R、r分別為大圓和小圓的半徑;
(2)若L=160m,r=10m,求使圖2面積為最大時(shí)的θ值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,兩圓同心,半徑分別為6與8,又矩形ABCD的邊AB和CD分別為小大兩圓的弦.則當(dāng)矩形ABCD面積最大時(shí),求此矩形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,兩圓同心,半徑分別為9cm和5cm,另有一個(gè)圓與這兩個(gè)圓都相切,則此圓的半徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖所示,兩圓同心,半徑分別為9cm和5cm,另有一個(gè)圓與這兩個(gè)圓都相切,則此圓的半徑為


  1. A.
    2 cm
  2. B.
    7 cm
  3. C.
    2 cm或7 cm
  4. D.
    4 cm

查看答案和解析>>

同步練習(xí)冊(cè)答案