閱讀下面的材料:
如果關(guān)于x的方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則x1=
-b+
b2-4ac
2a
,x2=
-b-
b2-4ac
2a
,
x1+x2=
-2b
2a
=-
b
a
,x1x2=
b2-(b2-4ac)
4a2
=
4ac
4a2
=
c
a
;
綜合得:若方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則有x1+x2=-
b
a
,x1x2=
c
a
;
請利用這一結(jié)論解決問題:
(1)方程x2+bx+c=0的兩根為-1和3,求b與c的值;
(2)設(shè)方程2x2-3x+1=0的兩根為x1,x2,求
1
x1
+
1
x2
以及2x12+2x22的值.
(1)∵-1+3=-b,(-1)×3=c,
∴b=-2,c=-3;

(2)∵x1+x2=
3
2
x1x2=
1
2
,
1
x1
+
1
x2
=
x1+x2
x1x2
=
3
2
1
2
=3
,
2x12+2x22=2(x12+x22)=2[(x1+x22-2x1x2]
=2[(
3
2
)
2
-2×
1
2
]=2(
9
4
-1)=
9
2
-2=
5
2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的材料:
如果關(guān)于x的方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a
,
x1+x2=
-2b
2a
=-
b
a
,x1x2=
b2-(b2-4ac)
4a2
=
4ac
4a2
=
c
a

綜合得:若方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則有x1+x2=-
b
a
,x1x2=
c
a
;
請利用這一結(jié)論解決問題:
(1)方程x2+bx+c=0的兩根為-1和3,求b與c的值;
(2)設(shè)方程2x2-3x+1=0的兩根為x1,x2,求
1
x1
+
1
x2
以及2x12+2x22的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下面的材料:
如果關(guān)于x的方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則數(shù)學公式數(shù)學公式,
數(shù)學公式,數(shù)學公式;
綜合得:若方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則有數(shù)學公式,數(shù)學公式;
請利用這一結(jié)論解決問題:
(1)方程x2+bx+c=0的兩根為-1和3,求b與c的值;
(2)設(shè)方程2x2-3x+1=0的兩根為x1,x2,求數(shù)學公式以及2x12+2x22的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年北師大版九年級(上)期末數(shù)學試卷(一)(解析版) 題型:解答題

閱讀下面的材料:
如果關(guān)于x的方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則,,
;
綜合得:若方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則有,;
請利用這一結(jié)論解決問題:
(1)方程x2+bx+c=0的兩根為-1和3,求b與c的值;
(2)設(shè)方程2x2-3x+1=0的兩根為x1,x2,求以及2x12+2x22的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東省濟寧市微山縣兩城一中九年級(上)第一次月考數(shù)學試卷(解析版) 題型:解答題

閱讀下面的材料:
如果關(guān)于x的方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則,
;
綜合得:若方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則有;
請利用這一結(jié)論解決問題:
(1)方程x2+bx+c=0的兩根為-1和3,求b與c的值;
(2)設(shè)方程2x2-3x+1=0的兩根為x1,x2,求以及2x12+2x22的值.

查看答案和解析>>

同步練習冊答案