【題目】如圖,已知在△ABC中,AB=AC,AB的垂直平分線DE交AC于點(diǎn)E,CE的垂直平分線正好經(jīng)過點(diǎn)B,與AC相交于點(diǎn)F,求∠ A的度數(shù).
【答案】 36°
【解析】試題分析:連接BE,根據(jù)等腰三角形的性質(zhì)得出∠ABC、∠C與∠A的關(guān)系,根據(jù)DE是線段AB的中垂線得出AE=BE,∠A=∠ABE,從而根據(jù)角平分線的性質(zhì)得出∠A的度數(shù).
試題解析:連接BE ∵△ABC是等腰三角形, ∴∠ABC=∠C=①,
∵DE是線段AB的垂直平分線, ∴AE=BE, ∴∠A=∠ABE,
∵CE的垂直平分線正好經(jīng)過點(diǎn)B,與AC相交于點(diǎn)可知△BCE是等腰三角形, ∴BF是∠EBC的平分線,
∴(∠ABC﹣∠A)+∠C=90°,即(∠C﹣∠A)+∠C=90°②,
①②聯(lián)立得,∠A=36°. 故∠A=36°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣2ax﹣3a(a<0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過點(diǎn)A的直線l:y=kx+b與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)直接寫出點(diǎn)A的坐標(biāo),并求直線l的函數(shù)表達(dá)式(其中k,b用含a的式子表示);
(2)點(diǎn)E是直線l上方的拋物線上的一點(diǎn),若△ACE的面積的最大值為,求a的值;
(3)設(shè)P是拋物線對(duì)稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不能判斷四邊形ABCD是平行四邊形的是( 。
A.AB=CD,AD=BC
B.AB=CD,AB∥CD
C.AB=CD,AD∥BC
D.AB∥CD,AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了考察八年級(jí)同學(xué)的視力情況,從八年級(jí)的10個(gè)班共420名學(xué)生中,每班抽取了5名進(jìn)行分析。在這個(gè)問題中.樣本容量是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報(bào)載,2014年我國發(fā)展固定寬帶接入新用戶25000000戶,其中25000000用科學(xué)記數(shù)法表示為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在頻數(shù)分布直方圖中,各小矩形的面積等于( ).
A. 相應(yīng)各組的頻數(shù) B. 組數(shù) C. 相應(yīng)各組的頻率 D. 組距
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把拋物線y=﹣2x2向上平移1個(gè)單位,再向右平移1個(gè)單位,得到的拋物線是( )
A.y=﹣2(x+1)2+1
B.y=﹣2(x﹣1)2+1
C.y=﹣2(x﹣1)2﹣1
D.y=﹣2(x+1)2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠C=90°,D是AB的中點(diǎn),DE⊥DF,點(diǎn)E,F分別在AC,BC上,求證:DE=DF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com