【題目】如圖,ABCD的對角線AC、BD相交于點O,點E、F分別是線段AO、BO的中點,若AC+BD=22cm,△OAB的周長是16cm,則EF的長為cm.
【答案】2.5
【解析】解:∵四邊形ABCD是平行四邊形, ∴OA=OC,OB=OD,
∵AC+BD=22cm,
∴OA+OB=11cm,
∵△OAB的周長為16cm,
∴AB=5cm,
∵點E、F分別是線段AO、BO的中點,
∴EF是△OAB的中位線,
∴EF= AB= ,
所以答案是2.5
【考點精析】本題主要考查了三角形中位線定理和平行四邊形的性質(zhì)的相關(guān)知識點,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是
( 。
A.
B.
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,對角線AC與BC相交于O , E為AB的中點,F為DE的中點,G為CF的中點, OH⊥DE于H , 過A作AI⊥DE于I , 交BD于J , 交BC于K , 連接BI .
下列結(jié)論:①G到AC的距離等于 ;②OH= ;③BK= AK;④∠BIJ=45°.其中正確的結(jié)論是
A.①②③
B.①②④
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,Rt△ABC中,∠C=90°,AC=6,BC=8,以B為圓心,半徑為3的⊙O沿BC方向以每秒1個單位的速度平移,當⊙O運動到與直線相交于點C時(點O在BC上),⊙O停止運動.
(1) (2) (3)
(1)當運動停止時,試判斷直線AB與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)在平移過程中,若⊙O與AB相切于點D,連接CD , 求△ACD的面積;
(3)在平移過程中,若⊙O經(jīng)過AB的中點G時, E、F為OC上的兩個動點,且EF=1.6,當四邊形AGEF的周長最小時,試求OE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有40個黑、白兩種顏色的球,這些球除顏色外完全相同.小麗做摸球?qū)嶒,攪勻后她從盒子里摸出一個球記下顏色后,再把球放回盒子中,不斷重復上述過程,表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù)m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
若從盒子里隨機摸出一個球,則摸到白球的概率的估計值為 . (精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知定點A(1,0)和B(0,1).
(1)如圖1,若動點C在x軸上運動,則使△ABC為等腰三角形的點C有幾個?
(2)如圖2,過點A,B向過原點的直線l作垂線,垂足分別為M、N,試判斷線段AM、BN、MN之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(a,1)、B(﹣1,b)都在雙曲線y=﹣ 上,點P、Q分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是( )
A.y=x
B.y=x+1
C.y=x+2
D.y=x+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)的圖象經(jīng)過點A(2,1)和點B(0,2).
(1)求出函數(shù)的關(guān)系式;
(2)在平面置角坐標系內(nèi)畫一次函數(shù)的圖象,回答下列問題:
①y的值隨著x的值的增大而 ,它的圖象與x軸的交點坐標是 .
②下列點在一次函數(shù)圖象上的是 ;
(1,),(﹣2,3),(6,﹣5)
③當x ,時,y>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com