如圖1,矩形OABC的頂點(diǎn)O為原點(diǎn),點(diǎn)E在AB上,把△CBE沿CE折疊,使點(diǎn)B落在OA邊上的點(diǎn)D處,點(diǎn)A、D坐標(biāo)分別為(10,0)和(6,0),拋物線y=
1
5
x2+bx+c
過(guò)點(diǎn)C、B.
(1)求C、B兩點(diǎn)的坐標(biāo)及該拋物線的解析式;
(2)如圖2,長(zhǎng)、寬一定的矩形PQRS的寬PQ=1,點(diǎn)P沿(1)中的拋物線滑動(dòng),在滑動(dòng)過(guò)程中PQ∥x軸,且RS在PQ的下方,當(dāng)P點(diǎn)橫坐標(biāo)為-1時(shí),點(diǎn)S距離x軸
11
5
個(gè)單位,當(dāng)矩形PQRS在滑動(dòng)過(guò)程中被x軸分成上下兩部分的面積比為2:3時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖3,動(dòng)點(diǎn)M、N同時(shí)從點(diǎn)O出發(fā),點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度沿折線ODC按O→D→C的路線運(yùn)動(dòng),點(diǎn)N以每秒8個(gè)單位長(zhǎng)度的速度沿折線OCD按O?C?D的路線運(yùn)動(dòng),當(dāng)M、N兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)M、N同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OMN的面積為S.①求出S與t的函數(shù)關(guān)系式,并寫出t的取值范圍:②設(shè)S0是①中函數(shù)S的最大值,那么S0=
 

精英家教網(wǎng)
分析:(1)本題可根據(jù)折疊的性質(zhì)進(jìn)行求解.根據(jù)折疊的性質(zhì)可知:CD=BC=OA,可在直角三角形OCD中用勾股定理求出OC的長(zhǎng),即可求出C、B的坐標(biāo),將這兩點(diǎn)坐標(biāo)代入拋物線中即可求出拋物線的解析式.
(2)先根據(jù)x=-1時(shí),P的縱坐標(biāo)求出PS的長(zhǎng)即矩形的長(zhǎng),然后根據(jù)矩形被x軸分成上3下2兩部分,可求出此時(shí)P點(diǎn)的縱坐標(biāo),代入拋物線中即可求出P點(diǎn)的坐標(biāo).
(3)一:本題要分三種情況進(jìn)行討論:
①當(dāng)0≤t≤1時(shí),此時(shí)N在OC上.M在OD上.可用t表示出OM、ON的長(zhǎng),進(jìn)而可求出S、t的函數(shù)關(guān)系式.
②當(dāng)1<t≤2時(shí),此時(shí)N在CD上,M在OD上.過(guò)N作x軸的垂線,在構(gòu)建的直角三角形中,用ND的長(zhǎng)求出△OMN的高,而后同①.
③當(dāng)2<t≤
24
11
時(shí),此時(shí),N、M均在CD上.先用t表示出NM的長(zhǎng),然后過(guò)O作OH⊥CD于H,在直角三角形OCH(或ODH)中,用OC的長(zhǎng)和∠OCD的正弦值求出△OMN中NM邊上的高.
二:根據(jù)一的函數(shù)的性質(zhì)及自變量的取值范圍即可求出S的最大值及對(duì)應(yīng)的t的值.
解答:解:(1)∵A(10,0),D(6,0),
∴OA=10,OD=6,
又∵四邊形OCBA為矩形,
∴∠COA=∠BAO=90°OC=AB=BC=OA=10.
又∵△CED為△CBE沿CE翻折得到的,
∴CD=CB=10,
∴在Rt△COD中,由勾股定理得:OC=
CD2-OD2
=8.
∴C(0,8),B(10,8),
又∵C、B均在y=
1
5
x2+bx+c上,
c=8
100×
1
5
+10b+c=8
,
c=8
b=-2

∴y=
1
5
x2-2x+8;

(2)當(dāng)x=-1時(shí),y=
1
5
×(-1)2-2×(-1)+8=
51
5

∴此時(shí)P(-1,
51
5
),
又∵S距離x軸上方
11
5
個(gè)單位,
∴PS=
51
5
-
11
5
=8,
∴矩形PQRS的長(zhǎng)為8,寬為1,
設(shè)PQRS在下滑過(guò)程中交x軸分別于G、H兩點(diǎn).
則由題意知:
S矩形PQHG
S矩形HGSR
=
2
3
,
PG
GS
=
2
3

∴PG=
2
5
PS=
16
5

故P的縱坐標(biāo)為
16
5
,
∴設(shè)P(a,
16
5
),則
1
5
a2-2a+8=
16
5
,
∴a1=4,a2=6,(1分)
∴P(4,
16
5
)或(6,
16
5
);

(3)∵點(diǎn)M的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)N的速度是每秒8個(gè)單位長(zhǎng)度,
∴3t+8t=6+8+10,
解得t=
24
11

①當(dāng)0≤t≤1時(shí),此時(shí)N在OC上.M在OD上.
∴S△OMN=
1
2
OM•NH=
1
2
×3t×8t=12t2精英家教網(wǎng),
此時(shí),當(dāng)t=1時(shí),S=12,
②當(dāng)1<t≤2時(shí),此時(shí)N在CD上,M在OD上.
則DN=18-8t,
過(guò)N作NH⊥OD于H,
NH
ND
=sin∠CDO=
OC
CD
=
4
5
,
∴NH=
4
5
DN=
4
5
(18-8t)=
8
5
(9-4t).
∴S△OMN=
1
2
OM•ON,
=
1
2
×
8
5
(9-4t)×3t,
=-
48
5
t2+
108
5
t,
=-
48
5
(t-
9
8
2+
243
20
精英家教網(wǎng),
∴當(dāng)t=
9
8
時(shí),S=
243
20
=12.15.
③當(dāng)2<t≤
24
11
時(shí),此時(shí),N、M均在CD上,
則MN=24-11t,
過(guò)O作OH⊥CD于H,
則由等面積得:OH=
24
5
,
∴S△OMN=
1
2
OH•MN=
1
2
×
24
5
×(24-11t)=-
132
5
t+
288
5
,
此時(shí)當(dāng)t=2時(shí),S=
24
5
點(diǎn)評(píng):本題主要考查了矩形的性質(zhì)、圖形的折疊變換、圖形面積的求法以及二次函數(shù)的應(yīng)用等知識(shí).
綜合性強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長(zhǎng)最?如果存在,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,將矩形OABC在直角坐標(biāo)系中A(4,0),B(4,3),將矩形OABC沿OB對(duì)折,使點(diǎn)A落在E處,并交BC于點(diǎn)F,則BF=
 
,點(diǎn)E的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形OABC中,OA=8,OC=4,OA,OC分別在x,y軸上,點(diǎn)D在OA上,且CD=AD.
(1)求直線CD的函數(shù)關(guān)系式;
(2)求經(jīng)過(guò)B,C,D三點(diǎn)的拋物線的關(guān)系式;
(3)在上述拋物線上位于x軸下方的圖象上,是否存在一點(diǎn)P,使△PBC的面積等于矩形OABC的面積的
35
?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南沙區(qū)一模)將邊長(zhǎng)OA=8,OC=10的矩形OABC放在平面直角坐標(biāo)系中,頂點(diǎn)O為原點(diǎn),頂點(diǎn)C、A分別在x軸和y軸上.在OA邊上選取適當(dāng)?shù)狞c(diǎn)E,連接CE,將△EOC沿CE折疊.

(1)如圖①,當(dāng)點(diǎn)O落在AB邊上的點(diǎn)D處時(shí),點(diǎn)E的坐標(biāo)為
(0,5)
(0,5)

(2)如圖②,當(dāng)點(diǎn)O落在矩形OABC內(nèi)部的點(diǎn)D處時(shí),過(guò)點(diǎn)E作EG∥x軸交CD于點(diǎn)H,交BC于點(diǎn)G.求證:EH=CH;
(3)在(2)的條件下,設(shè)H(m,n),寫出m與n之間的關(guān)系式
m=
1
20
n2+5
m=
1
20
n2+5
;
(4)如圖③,將矩形OABC變?yōu)檎叫,OC=10,當(dāng)點(diǎn)E為AO中點(diǎn)時(shí),點(diǎn)O落在正方形OABC內(nèi)部的點(diǎn)D處,延長(zhǎng)CD交AB于點(diǎn)T,求此時(shí)AT的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形OABC中,已知A,C兩點(diǎn)的坐標(biāo)分別為A(4,0),C(0,2),D為OA的中點(diǎn).設(shè)點(diǎn)P是∠AOC平分線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合).
(1)試證明:無(wú)論點(diǎn)P運(yùn)動(dòng)到何處,PC總與PD相等;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B的距離最小時(shí),求P的坐標(biāo);
(3)已知E(1,-1),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),△PDE的周長(zhǎng)最小?求出此時(shí)點(diǎn)P的坐標(biāo)和△PDE的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案