【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為,與坐標(biāo)軸交于、、三點(diǎn),且點(diǎn)的坐標(biāo)為.
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)圖象位于軸上方部分有兩個(gè)動點(diǎn)、,且點(diǎn)在點(diǎn)的左側(cè),過、作軸的垂線交軸于點(diǎn)、兩點(diǎn),當(dāng)四邊形為矩形時(shí),求該矩形周長的最大值;
(3)在(2)中的矩形周長最大時(shí),連接,已知點(diǎn)是軸上一動點(diǎn),過點(diǎn)作軸,交直線于點(diǎn),是否存在這樣的點(diǎn),使直線把分成面積為的兩部分;若存在,求出該點(diǎn)的坐標(biāo);若不存在,請說明理由.
備用圖
【答案】(1);(2)20;(3)存在;點(diǎn)的坐標(biāo)為或
【解析】
(1)二次函數(shù)表達(dá)式為:,將點(diǎn)B的坐標(biāo)代入上式,即可求解;
(2)設(shè)點(diǎn)的坐標(biāo)為,則的坐標(biāo)為,的坐標(biāo)為,從而求得;,所以矩形MNHG的周長,即可求解;
(3)當(dāng)矩形周長取得最大值時(shí),,從而求出的值,然后求出直線的解析式,設(shè)點(diǎn)坐標(biāo)為,分當(dāng)的面積是面積的時(shí);當(dāng)的面積是面積的時(shí)兩種情況分別列出方程,求出點(diǎn)P的坐標(biāo).
解:(1)設(shè)二次函數(shù)的解析式為
二次函數(shù)圖像的頂點(diǎn)坐標(biāo)為
又圖象經(jīng)過點(diǎn)
解得:
二次函數(shù)的解析式為
(2)四邊形為矩形,
關(guān)于直線對稱
設(shè)點(diǎn)的坐標(biāo)為,則的坐標(biāo)為
的坐標(biāo)為
;
矩形的周長
當(dāng)時(shí),
矩形周長的最大值為20.
(3)存在,理由如下:
當(dāng)矩形周長取得最大值時(shí),
,對稱軸為直線
設(shè)直線的解析式為
將代入上式得:
,解得
設(shè)點(diǎn)坐標(biāo)為
①當(dāng)的面積是面積的時(shí),
解得:;(舍去)
②當(dāng)的面積是面積的時(shí),
解得:;(舍去)
綜上所述,點(diǎn)的坐標(biāo)為或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣西“稻魚綜合養(yǎng)殖”符合生態(tài)養(yǎng)殖,綠色發(fā)展.某稻魚綜合養(yǎng)殖戶計(jì)劃購買甲,乙兩種禾花魚魚苗,經(jīng)調(diào)查,得到以下信息:
購買重量小于40 kg | 購買重量不小于40 kg | |
甲魚苗 | 原價(jià)銷售 | 打七折銷售 |
乙魚苗 | 原價(jià)銷售 | 打八折銷售 |
如果購買10 kg的甲魚苗和5 kg的乙魚苗需用700元,如果購買20 kg的甲魚苗和15 kg的乙魚苗需用1600元.
(1)甲魚苗和乙魚苗的單價(jià)各是多少元?
(2)現(xiàn)決定購買甲,乙兩種魚黃共90 kg,其中,乙魚苗的重量不大于甲魚苗重量的2倍,設(shè)購買甲魚苗a kg(),求該養(yǎng)殖戶購買這批魚苗的總費(fèi)用W與a之間的函數(shù)解析式;
(3)在(2)的條件下,請?jiān)O(shè)計(jì)一種購買方案,使所需總費(fèi)用最低,并求出最低總費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,過點(diǎn)作于點(diǎn),延長交于點(diǎn),連接,若,線段的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)若將直線向下平移個(gè)單位長度后與反比例函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).
(1)求拋物線M的函數(shù)表達(dá)式;
(2)設(shè)F(t,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1.
①拋物線M1的頂點(diǎn)B1的坐標(biāo)為 ;
②當(dāng)拋物線M1與線段AB有公共點(diǎn)時(shí),結(jié)合函數(shù)的圖象,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價(jià)為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價(jià)x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設(shè)這種電子鞭炮每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種電子鞭炮銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種款式童裝,一天可售出30套,每套盈利40元.為了擴(kuò)大銷售,增加盈利,商場決定采取降價(jià)措施.若一套童裝每降價(jià)1元,平均每天可多售出2套,設(shè)每套童裝降價(jià)元時(shí),商場一天可獲利潤元.
(1)求關(guān)于的函數(shù)解析式.
(2)若要商場每天盈利1500元,則應(yīng)降價(jià)多少元?
(3)當(dāng)每套童裝降價(jià)多少元時(shí),商場可獲最大利潤?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點(diǎn)B落在點(diǎn)E處,AE與DC的交點(diǎn)為O,連接DE.
(1)求證:△ADE≌△CED;
(2)求證:DE∥AC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com