【題目】如圖1,拋物線y=x2+(m﹣2)x﹣2m(m>0)與x軸交于A、B兩點(diǎn)(A在B左邊),與y軸交于點(diǎn)C.連接AC、BC,D為拋物線上一動(dòng)點(diǎn)(D在B、C兩點(diǎn)之間),OD交BC于E點(diǎn).
(1)若△ABC的面積為8,求m的值;
(2)在(1)的條件下,求的最大值;
(3)如圖2,直線y=kx+b與拋物線交于M、N兩點(diǎn)(M不與A重合,M在N左邊),連MA,作NH⊥x軸于H,過點(diǎn)H作HP∥MA交y軸于點(diǎn)P,PH交MN于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo).
【答案】(1)m=2;(2);(3) Q點(diǎn)的橫坐標(biāo)為2.
【解析】
(1)解方程x2+(m-2)x一2m=0求出拋物線與x軸的交點(diǎn),再令x=0,求出拋物線與y軸的交點(diǎn),然后根據(jù)△ABC的面積為8,列方程求解即可;
(2)過點(diǎn)D作DF∥y軸交BC于F,求出點(diǎn)B、點(diǎn)C的坐標(biāo),用待定系數(shù)法求出直線BC的解析式,表示出DF的長,利用平行線分線段成比例定理列出關(guān)于的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)即可求出結(jié)論;
(3)設(shè)M(x1,kx1+b)、N(x2,kx2+b),聯(lián)立一次函數(shù)與二次函數(shù)關(guān)系式,整理可得x1+x2=2+k-m,x1x2=-2m-b. 過點(diǎn)M作MK⊥x軸于K,過點(diǎn)Q作QL⊥x軸于L,由△MKA∽△QLH,列比利式整理可得(km-b)(n-2)=0,然后分兩種情況討論可得點(diǎn)Q的橫坐標(biāo).
(1) y=x2+(m-2)x-2m=(x+m)(x-2),
令y=0,則(x+m)(x-2)=0,解得x1=-m,x2=2,
∴A(-m,0)、B(2,0),
令x=0,則y=-2m,
∴C(0,-2m),
∴AB=2+m,OC=2m.
∵S△ABC=×(2+m)×2m=8,
解得m1=2,m2=-4,
∵m>0,
∴m=2;
(2) 過點(diǎn)D作DF∥y軸交BC于F,
由(1)可知:m=2,
∴拋物線的解析式為y=x2-4,
∴B(2,0)、C(0,-4),
∴直線BC的解析式為y=2x-4.
設(shè)D(t,t2-4),則F(t,2t-4),
∴DF=2t-4-(t2-4)=-t2+2t,OC=4,
∵DF∥y軸,
∴===-(t-1)2+,
當(dāng)t=1時(shí),有最大值為,此時(shí)D(1,3);
(3) 設(shè)M(x1,kx1+b)、N(x2,kx2+b),
聯(lián)立,整理得x2+(m-2-k)x-2m-b=0,
∴x1+x2=2+k-m,x1x2=-2m-b,
設(shè)點(diǎn)Q的橫坐標(biāo)為n,則Q(n,kn+b),
過點(diǎn)M作MK⊥x軸于K,過點(diǎn)Q作QL⊥x軸于L,
∵MA∥PH,
∴△MKA∽△QLH,
∴=,
即,整理得kx1x2+b(x1+x2)+kmn+bm-bn=0,
∴k(-2m-b)+b(2+k-m)+kmn+bm-bn=0,
∴(km-b)(n-2)=0,
②km-b=0,此時(shí)直線為y=k(x+m),過點(diǎn)A(-m,0),不符合題意,
②當(dāng)n-2=0,此時(shí)n=2,Q點(diǎn)的橫坐標(biāo)為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)(1)班50名學(xué)生需要參加體育“五選一”自選項(xiàng)目測試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)如表所示:
自選項(xiàng)目 | 人數(shù) | 頻率 |
立定跳遠(yuǎn) | b | 0.18 |
三級(jí)蛙跳 | 12 | 0.24 |
一分鐘跳繩 | 8 | a |
投擲實(shí)心球 | 16 | 0.32 |
推鉛球 | 5 | 0.10 |
合計(jì) | 50 | 1 |
(1)求a,b的值;
(2)若該校九年級(jí)共有400名學(xué)生,試估計(jì)年級(jí)選擇“一分鐘跳繩”項(xiàng)目的總?cè)藬?shù);
(3)在選報(bào)“推鉛球”的學(xué)生中,有3名男生,2名女生,為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測試,求所抽取的兩名學(xué)生中至少有一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和1分鐘跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為參加這兩項(xiàng)比賽的10名學(xué)生的預(yù)賽成績:
學(xué)生編號(hào) 成績 項(xiàng)目 | 3104 | 3508 | 3115 | 3406 | 3317 | 3413 | 3218 | 3307 | 3519 | 3210 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
1分鐘跳繩(單位:次) | 163 | 175 | 160 | 163 | 172 | 170 | 165 |
在這10名學(xué)生中,同時(shí)進(jìn)入兩項(xiàng)決賽的只有6人,進(jìn)入立定跳遠(yuǎn)決賽的有8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在反比例函數(shù)的圖象上有一動(dòng)點(diǎn),連接并延長交圖象的另一支于點(diǎn),在第二象限內(nèi)有一點(diǎn),滿足,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)始終在函數(shù)的圖象上運(yùn)動(dòng),若,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ABC和⊙O如圖放置,已知AB=BC=1,∠ABC=90°,⊙O的半徑為1,圓心O與直線AB的距離為5.
(1)若△ABC以每秒2個(gè)單位的速度向右移動(dòng),⊙O不動(dòng),則經(jīng)過多少時(shí)間△ABC的邊與圓第一次相切?
(2)若兩個(gè)圖形同時(shí)向右移動(dòng),△ABC的速度為每秒2個(gè)單位,⊙O的速度為每秒1個(gè)單位,則經(jīng)過多少時(shí)間△ABC的邊與圓第一次相切?
(3)若兩個(gè)圖形同時(shí)向右移動(dòng),△ABC的速度為每秒2個(gè)單位,⊙O的速度為每秒1個(gè)單位,同時(shí)△ABC的邊長AB、BC都以每秒0.5個(gè)單位沿BA、BC方向增大.△ABC的邊與圓第一次相切時(shí),點(diǎn)B運(yùn)動(dòng)了多少距離?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長一定的正方形ABCD,Q是CD上一動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;
②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=1,點(diǎn)E、F分別在邊BC和CD上,AE=AF,∠EAF=60°,則CF的長是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)D,E分別是邊AB,AC上的點(diǎn),DE∥BC,點(diǎn)H是邊BC上的點(diǎn),連接AH交線段DE于點(diǎn)G,且BH=DE=12,DG=8,S△ADG=12,則S四邊形BCED=( )
A.24B.22.5C.20D.25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com